BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36858230)

  • 1. Sustainability of cellulose micro-/nanofibers: A comparative life cycle assessment of pathway technologies.
    Arfelis S; Aguado RJ; Civancik D; Fullana-I-Palmer P; Pèlach MÀ; Tarrés Q; Delgado-Aguilar M
    Sci Total Environ; 2023 May; 874():162482. PubMed ID: 36858230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of pre-treatments mediated by endoglucanase and TEMPO oxidation for eco-friendly low-cost energy production of cellulose nanofibrils.
    de Amorim Dos Santos A; Silva MJFE; Scatolino MV; Durães AFS; Dias MC; Damásio RAP; Tonoli GHD
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4934-4948. PubMed ID: 35978240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical comparison of the properties of cellulose nanofibers produced from softwood and hardwood through enzymatic, chemical and mechanical processes.
    Sanchez-Salvador JL; Campano C; Balea A; Tarrés Q; Delgado-Aguilar M; Mutjé P; Blanco A; Negro C
    Int J Biol Macromol; 2022 Apr; 205():220-230. PubMed ID: 35182566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils.
    Chen S; Yue N; Cui M; Penkova A; Huang R; Qi W; He Z; Su R
    Carbohydr Polym; 2022 Oct; 294():119803. PubMed ID: 35868763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods.
    Van Hai L; Zhai L; Kim HC; Kim JW; Choi ES; Kim J
    Carbohydr Polym; 2018 Jul; 191():65-70. PubMed ID: 29661322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing the Amount of Catalyst in TEMPO-Oxidized Cellulose Nanofibers: Effect on Properties and Cost.
    Serra A; González I; Oliver-Ortega H; Tarrès Q; Delgado-Aguilar M; Mutjé P
    Polymers (Basel); 2017 Oct; 9(11):. PubMed ID: 30965860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of the production of TEMPO-mediated oxidation cellulose nanofibrils by kneading.
    Sanchez-Salvador JL; Xu H; Balea A; Blanco A; Negro C
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129612. PubMed ID: 38272426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation.
    Jaušovec D; Vogrinčič R; Kokol V
    Carbohydr Polym; 2015 Feb; 116():74-85. PubMed ID: 25458275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical isolation and characterization of different cellulose nanofibers from cotton stalks.
    Soni B; Hassan el B; Mahmoud B
    Carbohydr Polym; 2015 Dec; 134():581-9. PubMed ID: 26428161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties.
    Soni B; Hassan EB; Schilling MW; Mahmoud B
    Carbohydr Polym; 2016 Oct; 151():779-789. PubMed ID: 27474625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zwitterionic Cellulose Nanofibrils with High Salt Sensitivity and Tolerance.
    Wang A; Yuan Z; Wang C; Luo L; Zhang W; Geng S; Qu J; Wei B; Wen Y
    Biomacromolecules; 2020 Apr; 21(4):1471-1479. PubMed ID: 32069405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment.
    Gamelas JA; Pedrosa J; Lourenço AF; Mutjé P; González I; Chinga-Carrasco G; Singh G; Ferreira PJ
    Micron; 2015 May; 72():28-33. PubMed ID: 25768897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications.
    Bakkari ME; Bindiganavile V; Goncalves J; Boluk Y
    Carbohydr Polym; 2019 Jan; 203():238-245. PubMed ID: 30318209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.
    Liu C; Li B; Du H; Lv D; Zhang Y; Yu G; Mu X; Peng H
    Carbohydr Polym; 2016 Oct; 151():716-724. PubMed ID: 27474618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose Nanofibers Prepared via Pretreatment Based on Oxone
    Ruan CQ; Gustafsson S; Strømme M; Mihranyan A; Lindh J
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29292731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fit-for-Use Nanofibrillated Cellulose from Recovered Paper.
    Balea A; Monte MC; Fuente E; Sanchez-Salvador JL; Tarrés Q; Mutjé P; Delgado-Aguilar M; Negro C
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling of TEMPO-mediated oxidation medium and its effect on nanocellulose properties.
    Xu H; Sanchez-Salvador JL; Blanco A; Balea A; Negro C
    Carbohydr Polym; 2023 Nov; 319():121168. PubMed ID: 37567710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry.
    Michelin M; Gomes DG; Romaní A; Polizeli MLTM; Teixeira JA
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32731405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of High Shear Dispersion on the Production of Cellulose Nanofibers by Ultrasound-Assisted TEMPO-Oxidation of Kraft Pulp.
    Loranger E; Piché AO; Daneault C
    Nanomaterials (Basel); 2012 Sep; 2(3):286-297. PubMed ID: 28348309
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Ibarra D; Martín-Sampedro R; Wicklein B; Borrero-López AM; Valencia C; Valdehíta A; Navas JM; Eugenio ME
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.