These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 36858286)
1. cKMT1 is a New Lysine Methyltransferase That Methylates the Ferredoxin-NADP(+) Oxidoreductase and Regulates Energy Transfer in Cyanobacteria. Cao G; Lin X; Ling M; Lin J; Zhang Q; Jia K; Chen B; Wei W; Wang M; Jia S; Yang M; Ge F Mol Cell Proteomics; 2023 Apr; 22(4):100521. PubMed ID: 36858286 [TBL] [Abstract][Full Text] [Related]
2. Rational redesign of the ferredoxin-NADP Wiegand K; Winkler M; Rumpel S; Kannchen D; Rexroth S; Hase T; Farès C; Happe T; Lubitz W; Rögner M Biochim Biophys Acta Bioenerg; 2018 Apr; 1859(4):253-262. PubMed ID: 29378161 [TBL] [Abstract][Full Text] [Related]
4. Salt shock-inducible photosystem I cyclic electron transfer in Synechocystis PCC6803 relies on binding of ferredoxin:NADP(+) reductase to the thylakoid membranes via its CpcD phycobilisome-linker homologous N-terminal domain. van Thor JJ; Jeanjean R; Havaux M; Sjollema KA; Joset F; Hellingwerf KJ; Matthijs HC Biochim Biophys Acta; 2000 Apr; 1457(3):129-44. PubMed ID: 10773158 [TBL] [Abstract][Full Text] [Related]
5. Molecular mechanism of negative cooperativity of ferredoxin-NADP+ reductase by ferredoxin and NADP(H): involvement of a salt bridge between Asp60 of ferredoxin and Lys33 of FNR. Chikuma Y; Miyata M; Lee YH; Hase T; Kimata-Ariga Y Biosci Biotechnol Biochem; 2021 Mar; 85(4):860-865. PubMed ID: 33693505 [TBL] [Abstract][Full Text] [Related]
6. Kinetic evidence for the PsaE-dependent transient ternary complex photosystem I/Ferredoxin/Ferredoxin:NADP(+) reductase in a cyanobacterium. van Thor JJ; Geerlings TH; Matthijs HC; Hellingwerf KJ Biochemistry; 1999 Sep; 38(39):12735-46. PubMed ID: 10504244 [TBL] [Abstract][Full Text] [Related]
7. Ferredoxin:NADP+ oxidoreductase association with phycocyanin modulates its properties. Korn A; Ajlani G; Lagoutte B; Gall A; Sétif P J Biol Chem; 2009 Nov; 284(46):31789-97. PubMed ID: 19759024 [TBL] [Abstract][Full Text] [Related]
8. A Clickable Photosystem I, Ferredoxin, and Ferredoxin NADP Medipally H; Mann M; Kötting C; van Berkel WJH; Nowaczyk MM Chembiochem; 2023 Jul; 24(14):e202300025. PubMed ID: 37093822 [TBL] [Abstract][Full Text] [Related]
9. A larger transcript is required for the synthesis of the smaller isoform of ferredoxin:NADP oxidoreductase. Omairi-Nasser A; de Gracia AG; Ajlani G Mol Microbiol; 2011 Sep; 81(5):1178-89. PubMed ID: 21790803 [TBL] [Abstract][Full Text] [Related]
10. Interaction of positively charged amino acid residues of recombinant, cyanobacterial ferredoxin:NADP+ reductase with ferredoxin probed by site directed mutagenesis. Schmitz S; Martínez-Júlvez M; Gómez-Moreno C; Böhme H Biochim Biophys Acta; 1998 Jan; 1363(1):85-93. PubMed ID: 9511808 [TBL] [Abstract][Full Text] [Related]
11. Structural basis for the isotype-specific interactions of ferredoxin and ferredoxin: NADP Shinohara F; Kurisu G; Hanke G; Bowsher C; Hase T; Kimata-Ariga Y Photosynth Res; 2017 Dec; 134(3):281-289. PubMed ID: 28093652 [TBL] [Abstract][Full Text] [Related]
12. A second isoform of the ferredoxin:NADP oxidoreductase generated by an in-frame initiation of translation. Thomas JC; Ughy B; Lagoutte B; Ajlani G Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18368-73. PubMed ID: 17116880 [TBL] [Abstract][Full Text] [Related]
13. Molecular and functional characterization of ferredoxin NADP(H) oxidoreductase from Gracilaria chilensis and its complex with ferredoxin. Vorphal MA; Bruna C; Wandersleben T; Dagnino-Leone J; Lobos-González F; Uribe E; Martínez-Oyanedel J; Bunster M Biol Res; 2017 Dec; 50(1):39. PubMed ID: 29221464 [TBL] [Abstract][Full Text] [Related]
14. Lys75 of Anabaena ferredoxin-NADP+ reductase is a critical residue for binding ferredoxin and flavodoxin during electron transfer. Martínez-Júlvez M; Medina M; Hurley JK; Hafezi R; Brodie TB; Tollin G; Gómez-Moreno C Biochemistry; 1998 Sep; 37(39):13604-13. PubMed ID: 9753447 [TBL] [Abstract][Full Text] [Related]
15. Biphenyl degradation by recombinant photosynthetic cyanobacterium Synechocystis sp. PCC6803 in an oligotrophic environment using unphysiological electron transfer. Suzuki T; Nishizawa A; Kikuchi M; Nonaka C; Komuro M; Nakayama M; Kashino Y; Fukuda M; Kimura S Biochem J; 2019 Dec; 476(23):3615-3630. PubMed ID: 31738393 [TBL] [Abstract][Full Text] [Related]
17. An alternative plant-like cyanobacterial ferredoxin with unprecedented structural and functional properties. Motomura T; Zuccarello L; Sétif P; Boussac A; Umena Y; Lemaire D; Tripathy JN; Sugiura M; Hienerwadel R; Shen JR; Berthomieu C Biochim Biophys Acta Bioenerg; 2019 Nov; 1860(11):148084. PubMed ID: 31520614 [TBL] [Abstract][Full Text] [Related]
18. Glutamate 94 of [2Fe-2S]-ferredoxins is important for efficient electron transfer in the 1:1 complex formed with ferredoxin-glutamate synthase (GltS) from Synechocystis sp. PCC 6803. Schmitz S; Navarro F; Kutzki CK; Florencio FJ; Böhme H Biochim Biophys Acta; 1996 Nov; 1277(1-2):135-40. PubMed ID: 8950376 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Lysine Monomethylome and Methyltransferase in Model Cyanobacterium Synechocystis sp. PCC 6803. Lin X; Yang M; Liu X; Cheng Z; Ge F Genomics Proteomics Bioinformatics; 2020 Jun; 18(3):289-304. PubMed ID: 33130100 [TBL] [Abstract][Full Text] [Related]
20. External loops at the ferredoxin-NADP(+) reductase protein-partner binding cavity contribute to substrates allocation. Sánchez-Azqueta A; Martínez-Júlvez M; Hervás M; Navarro JA; Medina M Biochim Biophys Acta; 2014 Feb; 1837(2):296-305. PubMed ID: 24321506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]