These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 36858461)
1. Implication of Gao Y; Luo Q; Sun Z; Gao H; Yu Y; Sun Y; Ma X; Han C; Shi J; Wang F J Immunother Cancer; 2023 Mar; 11(3):. PubMed ID: 36858461 [TBL] [Abstract][Full Text] [Related]
2. Nuclear imaging-guided PD-L1 blockade therapy increases effectiveness of cancer immunotherapy. Gao H; Wu Y; Shi J; Zhang X; Liu T; Hu B; Jia B; Wan Y; Liu Z; Wang F J Immunother Cancer; 2020 Nov; 8(2):. PubMed ID: 33203663 [TBL] [Abstract][Full Text] [Related]
3. Nanobody-mediated SPECT/CT imaging reveals the spatiotemporal expression of programmed death-ligand 1 in response to a CD8 Ertveldt T; Meulewaeter S; De Vlaeminck Y; Olarte O; Broos K; Van Calenbergh S; Bourgeois S; Deprez J; Heremans Y; Goyvaerts C; Staels W; De Smedt S; Dewitte H; Devoogdt N; Keyaerts M; Verbeke R; Barbé K; Lentacker I; Breckpot K Theranostics; 2023; 13(15):5483-5500. PubMed ID: 37908728 [No Abstract] [Full Text] [Related]
4. A Pretargeted Imaging Strategy for Immune Checkpoint Ligand PD-L1 Expression in Tumor Based on Bioorthogonal Diels-Alder Click Chemistry. Qiu L; Tan H; Lin Q; Si Z; Mao W; Wang T; Fu Z; Cheng D; Shi H Mol Imaging Biol; 2020 Aug; 22(4):842-853. PubMed ID: 31741201 [TBL] [Abstract][Full Text] [Related]
5. Noninvasive Evaluation of Tumoral PD-L1 Using a Novel Hu B; Ma X; Shi L; Liu T; Li L; Yao M; Li C; Jia B Mol Pharm; 2024 Apr; 21(4):1977-1986. PubMed ID: 38395797 [TBL] [Abstract][Full Text] [Related]
6. Noninvasive Imaging of Tumor PD-L1 Expression Using [ Zhang Y; Ding Y; Li N; Wang S; Zhou S; Li R; Yang H; Li W; Qu J Mol Pharm; 2023 Jan; 20(1):690-700. PubMed ID: 36541699 [TBL] [Abstract][Full Text] [Related]
7. Early Phase I Study of a Xing Y; Chand G; Liu C; Cook GJR; O'Doherty J; Zhao L; Wong NCL; Meszaros LK; Ting HH; Zhao J J Nucl Med; 2019 Sep; 60(9):1213-1220. PubMed ID: 30796165 [TBL] [Abstract][Full Text] [Related]
8. Novel small Liang Z; Hu X; Hu H; Wang P; Cai J Front Oncol; 2022; 12():1017737. PubMed ID: 36387113 [TBL] [Abstract][Full Text] [Related]
9. In vivo and in vitro evidence that ⁹⁹mTc-HYNIC-interleukin-2 is able to detect T lymphocytes in vulnerable atherosclerotic plaques of the carotid artery. Glaudemans AW; Bonanno E; Galli F; Zeebregts CJ; de Vries EF; Koole M; Luurtsema G; Boersma HH; Taurino M; Slart RH; Signore A Eur J Nucl Med Mol Imaging; 2014 Sep; 41(9):1710-9. PubMed ID: 24737117 [TBL] [Abstract][Full Text] [Related]
10. Integrin α(v)β₃-targeted radiotracer (99m)Tc-3P-RGD₂ useful for noninvasive monitoring of breast tumor response to antiangiogenic linifanib therapy but not anti-integrin α(v)β₃ RGD₂ therapy. Ji S; Zheng Y; Shao G; Zhou Y; Liu S Theranostics; 2013; 3(11):816-30. PubMed ID: 24312152 [TBL] [Abstract][Full Text] [Related]
11. CD122-targeted interleukin-2 and αPD-L1 treat bladder cancer and melanoma via distinct mechanisms, including CD122-driven natural killer cell maturation. Reyes RM; Zhang C; Deng Y; Ji N; Mukherjee N; Padron AS; Clark CA; Svatek RS; Curiel TJ Oncoimmunology; 2021; 10(1):2006529. PubMed ID: 34858732 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. Gainkam LO; Huang L; Caveliers V; Keyaerts M; Hernot S; Vaneycken I; Vanhove C; Revets H; De Baetselier P; Lahoutte T J Nucl Med; 2008 May; 49(5):788-95. PubMed ID: 18413403 [TBL] [Abstract][Full Text] [Related]
13. Molecular imaging of HER2 expression in breast cancer patients using a novel peptide-based tracer Shi J; Du S; Wang R; Gao H; Luo Q; Hou G; Zhou Y; Zhu Z; Wang F J Transl Med; 2023 Jan; 21(1):19. PubMed ID: 36631812 [TBL] [Abstract][Full Text] [Related]
14. Preclinical Evaluation and First Patient Application of 99mTc-PSMA-I&S for SPECT Imaging and Radioguided Surgery in Prostate Cancer. Robu S; Schottelius M; Eiber M; Maurer T; Gschwend J; Schwaiger M; Wester HJ J Nucl Med; 2017 Feb; 58(2):235-242. PubMed ID: 27635024 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and preliminary biological evaluation of a novel Zhu D; Xu X; Zou P; Liu Y; Wang H; Han G; Lu C; Xie M Bioorg Med Chem Lett; 2023 Nov; 96():129496. PubMed ID: 37797805 [TBL] [Abstract][Full Text] [Related]
16. SPECT imaging of interleukin-6 receptor in ovarian tumor xenografts with a novel radiotracer of 99mTc-HYNIC-Aca-LSLITRL. Li F; Zhang Z; Cheng T; Wei R; Dai Y; Lv M; Luo D; Zhu X; Ma D; Xi L; Dong Q; Ma X Amino Acids; 2016 Jan; 48(1):91-101. PubMed ID: 26255282 [TBL] [Abstract][Full Text] [Related]
17. Inter- and intraobserver agreement of the quantitative assessment of [ Hughes DJ; Chand G; Goh V; Cook GJR EJNMMI Res; 2020 Dec; 10(1):145. PubMed ID: 33259032 [TBL] [Abstract][Full Text] [Related]
18. HER2-targeted dual radiotracer approach with clinical potential for noninvasive imaging of trastuzumab-resistance caused by epitope masking. Li L; Liu T; Shi L; Zhang X; Guo X; Hu B; Yao M; Zhu H; Yang Z; Jia B; Wang F Theranostics; 2022; 12(12):5551-5563. PubMed ID: 35910795 [No Abstract] [Full Text] [Related]
20. Evaluation of (99m)Tc-HYNIC-TMTP1 as a tumor-homing imaging agent targeting metastasis with SPECT. Li F; Cheng T; Dong Q; Wei R; Zhang Z; Luo D; Ma X; Wang S; Gao Q; Ma D; Zhu X; Xi L Nucl Med Biol; 2015 Mar; 42(3):256-62. PubMed ID: 25516099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]