BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36858504)

  • 21. Organ-on-a-Chip: A New Paradigm for Drug Development.
    Ma C; Peng Y; Li H; Chen W
    Trends Pharmacol Sci; 2021 Feb; 42(2):119-133. PubMed ID: 33341248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human organotypic bioconstructs from organ-on-chip devices for human-predictive biological insights on drug candidates.
    Cavero I; Guillon JM; Holzgrefe HH
    Expert Opin Drug Saf; 2019 Aug; 18(8):651-677. PubMed ID: 31268355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Applications of microphysiological systems to disease models in the biopharmaceutical industry: Opportunities and challenges.
    Irrechukwu O; Yeager R; David R; Ekert J; Saravanakumar A; Choi CK
    ALTEX; 2023; 40(3):485-518. PubMed ID: 36648096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing.
    Marx U; Andersson TB; Bahinski A; Beilmann M; Beken S; Cassee FR; Cirit M; Daneshian M; Fitzpatrick S; Frey O; Gaertner C; Giese C; Griffith L; Hartung T; Heringa MB; Hoeng J; de Jong WH; Kojima H; Kuehnl J; Leist M; Luch A; Maschmeyer I; Sakharov D; Sips AJ; Steger-Hartmann T; Tagle DA; Tonevitsky A; Tralau T; Tsyb S; van de Stolpe A; Vandebriel R; Vulto P; Wang J; Wiest J; Rodenburg M; Roth A
    ALTEX; 2016; 33(3):272-321. PubMed ID: 27180100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amplifying the impact of kidney microphysiological systems: predicting renal drug clearance using mechanistic modelling based on reconstructed drug secretion.
    Caetano-Pinto P; Nordell P; Nieskens T; Haughan K; Fenner KS; Stahl SH
    ALTEX; 2023; 40(3):408-424. PubMed ID: 36343109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Harnessing the power of microphysiological systems for COVID-19 research.
    Kleinstreuer N; Holmes A
    Drug Discov Today; 2021 Nov; 26(11):2496-2501. PubMed ID: 34332095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microphysiological systems for ADME-related applications: current status and recommendations for system development and characterization.
    Fowler S; Chen WLK; Duignan DB; Gupta A; Hariparsad N; Kenny JR; Lai WG; Liras J; Phillips JA; Gan J
    Lab Chip; 2020 Feb; 20(3):446-467. PubMed ID: 31932816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patient-Derived Microphysiological Systems for Precision Medicine.
    Ko J; Song J; Choi N; Kim HN
    Adv Healthc Mater; 2024 Mar; 13(7):e2303161. PubMed ID: 38010253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microphysiological systems for human aging research.
    Park S; Laskow TC; Chen J; Guha P; Dawn B; Kim DH
    Aging Cell; 2024 Mar; 23(3):e14070. PubMed ID: 38180277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiorgan Microphysiological Systems for Drug Development: Strategies, Advances, and Challenges.
    Wang YI; Carmona C; Hickman JJ; Shuler ML
    Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 29205920
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maximizing the impact of microphysiological systems with in vitro-in vivo translation.
    Cirit M; Stokes CL
    Lab Chip; 2018 Jun; 18(13):1831-1837. PubMed ID: 29863727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Industry Adoption of Organoids and Organs-on-Chip Technology: Toward a Paradox of Choice.
    Homan KA
    Adv Biol (Weinh); 2023 Jun; 7(6):e2200334. PubMed ID: 36861332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Emergence of Microphysiological Systems (Organs-on-chips) as Paradigm-changing Tools for Toxicologic Pathology.
    Rudmann DG
    Toxicol Pathol; 2019 Jan; 47(1):4-10. PubMed ID: 30407146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry.
    Baudy AR; Otieno MA; Hewitt P; Gan J; Roth A; Keller D; Sura R; Van Vleet TR; Proctor WR
    Lab Chip; 2020 Jan; 20(2):215-225. PubMed ID: 31799979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Application of Organs-on-a-Chip in Dental, Oral, and Craniofacial Research.
    Huang C; Sanaei F; Verdurmen WPR; Yang F; Ji W; Walboomers XF
    J Dent Res; 2023 Apr; 102(4):364-375. PubMed ID: 36726271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Current status of MPS research toward social implementation].
    Sakai Y; Kimura H
    Nihon Yakurigaku Zasshi; 2022; 157(5):330-334. PubMed ID: 36047147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microphysiological systems: What it takes for community adoption.
    Hargrove-Grimes P; Low LA; Tagle DA
    Exp Biol Med (Maywood); 2021 Jun; 246(12):1435-1446. PubMed ID: 33899539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic-based vascularized microphysiological systems.
    Lee S; Ko J; Park D; Lee SR; Chung M; Lee Y; Jeon NL
    Lab Chip; 2018 Sep; 18(18):2686-2709. PubMed ID: 30110034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging microphysiological systems: a review.
    Peel S; Jackman M
    Am J Physiol Cell Physiol; 2021 May; 320(5):C669-C680. PubMed ID: 33356942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The use of microphysiological systems to model metastatic cancer.
    Jackson CE; Green NH; English WR; Claeyssens F
    Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38579739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.