These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 36858504)

  • 41. Imaging microphysiological systems: a review.
    Peel S; Jackman M
    Am J Physiol Cell Physiol; 2021 May; 320(5):C669-C680. PubMed ID: 33356942
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The use of microphysiological systems to model metastatic cancer.
    Jackson CE; Green NH; English WR; Claeyssens F
    Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38579739
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Drug-induced skin toxicity: gaps in preclinical testing cascade as opportunities for complex in vitro models and assays.
    Hardwick RN; Betts CJ; Whritenour J; Sura R; Thamsen M; Kaufman EH; Fabre K
    Lab Chip; 2020 Jan; 20(2):199-214. PubMed ID: 31598618
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microphysiological Systems Evaluation: Experience of TEX-VAL Tissue Chip Testing Consortium.
    Rusyn I; Sakolish C; Kato Y; Stephan C; Vergara L; Hewitt P; Bhaskaran V; Davis M; Hardwick RN; Ferguson SS; Stanko JP; Bajaj P; Adkins K; Sipes NS; Hunter ES; Baltazar MT; Carmichael PL; Sadh K; Becker RA
    Toxicol Sci; 2022 Jul; 188(2):143-152. PubMed ID: 35689632
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Progress in developing microphysiological systems for biological product assessment.
    Mansouri M; Lam J; Sung KE
    Lab Chip; 2024 Feb; 24(5):1293-1306. PubMed ID: 38230512
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Corneal epithelium models for safety assessment in drug development: Present and future directions.
    Abdalkader RK; Fujita T
    Exp Eye Res; 2023 Dec; 237():109697. PubMed ID: 37890755
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The NIH microphysiological systems program: developing in vitro tools for safety and efficacy in drug development.
    Tagle DA
    Curr Opin Pharmacol; 2019 Oct; 48():146-154. PubMed ID: 31622895
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Organoid-based 3D in vitro microphysiological systems as alternatives to animal experimentation for preclinical and clinical research.
    Mukhopadhyay C; Paul MK
    Arch Toxicol; 2023 May; 97(5):1429-1431. PubMed ID: 36917352
    [No Abstract]   [Full Text] [Related]  

  • 49. Recent Advances of Biosensor-Integrated Organ-on-a-Chip Technologies for Diagnostics and Therapeutics.
    Shinde A; Illath K; Kasiviswanathan U; Nagabooshanam S; Gupta P; Dey K; Chakrabarty P; Nagai M; Rao S; Kar S; Santra TS
    Anal Chem; 2023 Feb; 95(6):3121-3146. PubMed ID: 36716428
    [No Abstract]   [Full Text] [Related]  

  • 50. Organ/body-on-a-chip based on microfluidic technology for drug discovery.
    Kimura H; Sakai Y; Fujii T
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):43-48. PubMed ID: 29175062
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advances in 3D neuronal microphysiological systems: towards a functional nervous system on a chip.
    Anderson WA; Bosak A; Hogberg HT; Hartung T; Moore MJ
    In Vitro Cell Dev Biol Anim; 2021 Feb; 57(2):191-206. PubMed ID: 33438114
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of microphysiological systems for nonclinical evaluation of cell therapies.
    Candarlioglu PL; Delsing L; Gauthier L; Lewis L; Papadopoulos G; Freag M; Chan TS; Homan KA; Fellows MD; Pointon A; Kojala K
    ALTEX; 2024; 41(3):469-484. PubMed ID: 38746991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces.
    Kavand H; Nasiri R; Herland A
    Adv Mater; 2022 Apr; 34(17):e2107876. PubMed ID: 34913206
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Opportunities and considerations for studying liver disease with microphysiological systems on a chip.
    Otumala AE; Hellen DJ; Luna CA; Delgado P; Dissanayaka A; Ugwumadu C; Oshinowo O; Islam MM; Shen L; Karpen SJ; Myers DR
    Lab Chip; 2023 Jun; 23(13):2877-2898. PubMed ID: 37282629
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A thermoplastic microfluidic microphysiological system to recapitulate hepatic function and multicellular interactions.
    Bale SS; Manoppo A; Thompson R; Markoski A; Coppeta J; Cain B; Haroutunian N; Newlin V; Spencer A; Azizgolshani H; Lu M; Gosset J; Keegan P; Charest JL
    Biotechnol Bioeng; 2019 Dec; 116(12):3409-3420. PubMed ID: 30963546
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modelling the innate immune system in microphysiological systems.
    Rupar MJ; Hanson H; Rogers S; Botlick B; Trimmer S; Hickman JJ
    Lab Chip; 2024 Jul; 24(15):3604-3625. PubMed ID: 38957150
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physiologically Based Pharmacokinetic and Pharmacodynamic Analysis Enabled by Microfluidically Linked Organs-on-Chips.
    Prantil-Baun R; Novak R; Das D; Somayaji MR; Przekwas A; Ingber DE
    Annu Rev Pharmacol Toxicol; 2018 Jan; 58():37-64. PubMed ID: 29309256
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pharmacokinetics-On-a-Chip: In Vitro Microphysiological Models for Emulating of Drugs ADME.
    Ramadan Q; Fardous RS; Hazaymeh R; Alshmmari S; Zourob M
    Adv Biol (Weinh); 2021 Sep; 5(9):e2100775. PubMed ID: 34323392
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potential value of animal microphysiological systems.
    Brown PC; Hooberman BH; Skinner BL; Wrzesinski C; Petibone DM; Ford KA; Muldoon-Jacobs K; Sung KE; Valerio LG; Sadrieh NN; Howard PC; Goering PL; Skoog SA; Fitzpatrick SC; Chen T; MacGill TC; Mendrick DL
    ALTEX; 2024 Aug; ():. PubMed ID: 39133010
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.