These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 36858504)

  • 61. From organ-on-chip to body-on-chip: The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing.
    Lacombe J; Soldevila M; Zenhausern F
    Prog Mol Biol Transl Sci; 2022; 187(1):41-91. PubMed ID: 35094781
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microphysiological Systems (Tissue Chips) and their Utility for Rare Disease Research.
    Low LA; Tagle DA
    Adv Exp Med Biol; 2017; 1031():405-415. PubMed ID: 29214585
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism, and accumulation.
    Rubiano A; Indapurkar A; Yokosawa R; Miedzik A; Rosenzweig B; Arefin A; Moulin CM; Dame K; Hartman N; Volpe DA; Matta MK; Hughes DJ; Strauss DG; Kostrzewski T; Ribeiro AJS
    Clin Transl Sci; 2021 May; 14(3):1049-1061. PubMed ID: 33382907
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Organs-on-chips: a decade of innovation.
    Strelez C; Jiang HY; Mumenthaler SM
    Trends Biotechnol; 2023 Mar; 41(3):278-280. PubMed ID: 36658006
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Challenges and opportunities in micro/nanofluidic and lab-on-a-chip.
    Verma N; Pandya A
    Prog Mol Biol Transl Sci; 2022; 186(1):289-302. PubMed ID: 35033289
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microphysiological systems meet hiPSC technology - New tools for disease modeling of liver infections in basic research and drug development.
    Raasch M; Fritsche E; Kurtz A; Bauer M; Mosig AS
    Adv Drug Deliv Rev; 2019 Feb; 140():51-67. PubMed ID: 29908880
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Monitoring of Microphysiological Systems: Integrating Sensors and Real-Time Data Analysis toward Autonomous Decision-Making.
    Young AT; Rivera KR; Erb PD; Daniele MA
    ACS Sens; 2019 Jun; 4(6):1454-1464. PubMed ID: 30964652
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Academic User View: Organ-on-a-Chip Technology.
    Busek M; Aizenshtadt A; Amirola-Martinez M; Delon L; Krauss S
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200386
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications.
    Fabre K; Berridge B; Proctor WR; Ralston S; Will Y; Baran SW; Yoder G; Van Vleet TR
    Lab Chip; 2020 Mar; 20(6):1049-1057. PubMed ID: 32073020
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Critical Considerations for the Design of Multi-Organ Microphysiological Systems (MPS).
    Malik M; Yang Y; Fathi P; Mahler GJ; Esch MB
    Front Cell Dev Biol; 2021; 9():721338. PubMed ID: 34568333
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modular Microphysiological System for Modeling of Biologic Barrier Function.
    Ishahak M; Hill J; Amin Q; Wubker L; Hernandez A; Mitrofanova A; Sloan A; Fornoni A; Agarwal A
    Front Bioeng Biotechnol; 2020; 8():581163. PubMed ID: 33304889
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Organ-on-a-chip: Its use in cardiovascular research.
    Lim S; Kim SW; Kim IK; Song BW; Lee S
    Clin Hemorheol Microcirc; 2023; 83(4):315-339. PubMed ID: 36502306
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Organ-on-a-chip: A new tool for in vitro research.
    Yan J; Li Z; Guo J; Liu S; Guo J
    Biosens Bioelectron; 2022 Nov; 216():114626. PubMed ID: 35969963
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Liver Microphysiological Systems for Predicting and Evaluating Drug Effects.
    Ribeiro AJS; Yang X; Patel V; Madabushi R; Strauss DG
    Clin Pharmacol Ther; 2019 Jul; 106(1):139-147. PubMed ID: 30993668
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Pumpless, modular, microphysiological systems enabling tunable perfusion for long-term cultivation of endothelialized lumens.
    Tronolone JJ; Lam J; Agrawal A; Sung K
    Biomed Microdevices; 2021 Apr; 23(2):25. PubMed ID: 33855605
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Roadblocks confronting widespread dissemination and deployment of Organs on Chips.
    Alver CG; Drabbe E; Ishahak M; Agarwal A
    Nat Commun; 2024 Jun; 15(1):5118. PubMed ID: 38879554
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Technical aspects of microphysiological systems (MPS) as a promising wet human-in-vivo simulator.
    Kanamori T; Sugiura S; Sakai Y
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):40-42. PubMed ID: 29217459
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Research and Development of Microphysiological Systems in Japan Supported by the AMED-MPS Project.
    Ishida S
    Front Toxicol; 2021; 3():657765. PubMed ID: 35295097
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Engineered Biomimetic Membranes for Organ-on-a-Chip.
    Rahimnejad M; Rasouli F; Jahangiri S; Ahmadi S; Rabiee N; Ramezani Farani M; Akhavan O; Asadnia M; Fatahi Y; Hong S; Lee J; Lee J; Hahn SK
    ACS Biomater Sci Eng; 2022 Dec; 8(12):5038-5059. PubMed ID: 36347501
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Early achievements of the Danish pharmaceutical industry--8. Lundbeck].
    Grevsen JV; Kirkegaard H; Kruse E; Kruse PR
    Theriaca; 2016; (43):9-61. PubMed ID: 27491172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.