These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 36858531)
1. An Amphipathic Structure of a Dipropylglycine-Containing Helical Peptide with Sufficient Length Enables Safe and Effective Intracellular siRNA Delivery. Oba M; Shibuya M; Yamaberi Y; Yokoo H; Uchida S; Ueda A; Tanaka M Chem Pharm Bull (Tokyo); 2023; 71(3):250-256. PubMed ID: 36858531 [TBL] [Abstract][Full Text] [Related]
2. siRNA delivery using amphipathic cell-penetrating peptides into human hepatoma cells. Furukawa K; Tanaka M; Oba M Bioorg Med Chem; 2020 Apr; 28(8):115402. PubMed ID: 32146061 [TBL] [Abstract][Full Text] [Related]
3. Intracellular Delivery of Plasmid DNA Using Amphipathic Helical Cell-Penetrating Peptides Containing Dipropylglycine. Naka M; Umeno T; Shibuya M; Yamaberi Y; Ueda A; Tanaka M; Takemoto H; Oba M Chem Pharm Bull (Tokyo); 2024; 72(5):512-517. PubMed ID: 38811213 [TBL] [Abstract][Full Text] [Related]
4. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy. Mo RH; Zaro JL; Shen WC Mol Pharm; 2012 Feb; 9(2):299-309. PubMed ID: 22171592 [TBL] [Abstract][Full Text] [Related]
6. Effect of helicity and hydrophobicity on cell-penetrating ability of arginine-rich peptides. Oba M; Nakajima S; Misao K; Yokoo H; Tanaka M Bioorg Med Chem; 2023 Aug; 91():117409. PubMed ID: 37441862 [TBL] [Abstract][Full Text] [Related]
7. Design and characterization of a new peptide vector for short interfering RNA delivery. Chen B; Xu W; Pan R; Chen P J Nanobiotechnology; 2015 Jun; 13():39. PubMed ID: 26054932 [TBL] [Abstract][Full Text] [Related]
8. Nonhemolytic Cell-Penetrating Peptides: Site Specific Introduction of Glutamine and Lysine Residues into the α-Helical Peptide Causes Deletion of Its Direct Membrane Disrupting Ability but Retention of Its Cell Penetrating Ability. Kim S; Hyun S; Lee Y; Lee Y; Yu J Biomacromolecules; 2016 Sep; 17(9):3007-15. PubMed ID: 27442521 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy. Vasconcelos L; Lehto T; Madani F; Radoi V; Hällbrink M; Vukojević V; Langel Ü Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):491-504. PubMed ID: 28962904 [TBL] [Abstract][Full Text] [Related]
10. Design of cyclic RGD-conjugated Aib-containing amphipathic helical peptides for targeted delivery of small interfering RNA. Wada SI; Iwata M; Ozaki Y; Ozaki T; Hayashi J; Urata H Bioorg Med Chem; 2016 Sep; 24(18):4478-4485. PubMed ID: 27480031 [TBL] [Abstract][Full Text] [Related]
11. The Formation of Nanoparticles between Small Interfering RNA and Amphipathic Cell-Penetrating Peptides. Pärnaste L; Arukuusk P; Langel K; Tenson T; Langel Ü Mol Ther Nucleic Acids; 2017 Jun; 7():1-10. PubMed ID: 28624185 [TBL] [Abstract][Full Text] [Related]
12. Trends in the Binding of Cell Penetrating Peptides to siRNA: A Molecular Docking Study. Rathnayake PV; Gunathunge BG; Wimalasiri PN; Karunaratne DN; Ranatunga RJ J Biophys; 2017; 2017():1059216. PubMed ID: 28321253 [TBL] [Abstract][Full Text] [Related]
13. Cell-penetrating peptides (CPPs) as a vector for the delivery of siRNAs into cells. Nakase I; Tanaka G; Futaki S Mol Biosyst; 2013 May; 9(5):855-61. PubMed ID: 23306408 [TBL] [Abstract][Full Text] [Related]
14. Peptide-Based Nanoparticles to Rapidly and Efficiently "Wrap 'n Roll" siRNA into Cells. Konate K; Dussot M; Aldrian G; Vaissière A; Viguier V; Neira IF; Couillaud F; Vivès E; Boisguerin P; Deshayes S Bioconjug Chem; 2019 Mar; 30(3):592-603. PubMed ID: 30586303 [TBL] [Abstract][Full Text] [Related]
15. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Crombez L; Aldrian-Herrada G; Konate K; Nguyen QN; McMaster GK; Brasseur R; Heitz F; Divita G Mol Ther; 2009 Jan; 17(1):95-103. PubMed ID: 18957965 [TBL] [Abstract][Full Text] [Related]
16. A new amphipathic, amino-acid-pairing (AAP) peptide as siRNA delivery carrier: physicochemical characterization and in vitro uptake. Jafari M; Xu W; Naahidi S; Chen B; Chen P J Phys Chem B; 2012 Nov; 116(44):13183-91. PubMed ID: 23077976 [TBL] [Abstract][Full Text] [Related]
17. Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery. Wada SI; Takesada A; Nagamura Y; Sogabe E; Ohki R; Hayashi J; Urata H Bioorg Med Chem Lett; 2017 Dec; 27(24):5378-5381. PubMed ID: 29157863 [TBL] [Abstract][Full Text] [Related]
18. Optimisation of vectorisation property: A comparative study for a secondary amphipathic peptide. Konate K; Lindberg MF; Vaissiere A; Jourdan C; Aldrian G; Margeat E; Deshayes S; Boisguerin P Int J Pharm; 2016 Jul; 509(1-2):71-84. PubMed ID: 27224007 [TBL] [Abstract][Full Text] [Related]
19. Peptide vectors for the nonviral delivery of nucleic acids. Hoyer J; Neundorf I Acc Chem Res; 2012 Jul; 45(7):1048-56. PubMed ID: 22455499 [TBL] [Abstract][Full Text] [Related]
20. Cell-penetrating peptides for siRNA delivery to glioblastomas. Srimanee A; Arvanitidou M; Kim K; Hällbrink M; Langel Ü Peptides; 2018 Jun; 104():62-69. PubMed ID: 29684592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]