BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36858626)

  • 1. Enhancement of apatite formation on Ti-50Zr alloy in simulated body environment.
    Miyazaki T; Ota S; Nakamura J
    Dent Mater J; 2023 May; 42(3):390-395. PubMed ID: 36858626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compositional dependence of the apatite formation ability of Ti-Zr alloys designed for hard tissue reconstruction.
    Miyazaki T; Hosokawa T; Yokoyama K; Shiraishi T
    J Mater Sci Mater Med; 2020 Nov; 31(11):110. PubMed ID: 33165675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of bioactive Ti-15Zr-4Nb-4Ta alloy from HCl and heat treatments after an NaOH treatment.
    Yamaguchi S; Takadama H; Matsushita T; Nakamura T; Kokubo T
    J Biomed Mater Res A; 2011 May; 97(2):135-44. PubMed ID: 21370443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of hafnium metal and titanium-hafnium alloys having apatite-forming ability by chemical surface modification.
    Miyazaki T; Sueoka M; Shirosaki Y; Shinozaki N; Shiraishi T
    J Biomed Mater Res B Appl Biomater; 2018 Oct; 106(7):2519-2523. PubMed ID: 29274252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of HCl concentrations on apatite-forming ability of NaOH-HCl- and heat-treated titanium metal.
    Pattanayak DK; Kawai T; Matsushita T; Takadama H; Nakamura T; Kokubo T
    J Mater Sci Mater Med; 2009 Dec; 20(12):2401-11. PubMed ID: 19585225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Ca contamination on apatite formation in a Ti metal subjected to NaOH and heat treatments.
    Kizuki T; Takadama H; Matsushita T; Nakamura T; Kokubo T
    J Mater Sci Mater Med; 2013 Mar; 24(3):635-44. PubMed ID: 23250580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of water treatment on the apatite-forming ability of NaOH-treated titanium metal.
    Uchida M; Kim HM; Kokubo T; Fujibayashi S; Nakamura T
    J Biomed Mater Res; 2002; 63(5):522-30. PubMed ID: 12209896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of different post-treatments on the bioactivity of alkali-treated Ti-5Si alloy.
    Hsu HC; Wu SC; Hsu SK; Liao YH; Ho WF
    Biomed Mater Eng; 2017; 28(5):503-514. PubMed ID: 28854492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of metallographic structure and machining process on the apatite-forming ability of sodium hydroxide- and heat-treated titanium.
    Miyazaki T; Sasaki T; Shirosaki Y; Yokoyama K; Kawashita M
    Biomed Mater Eng; 2018; 29(1):109-118. PubMed ID: 29254077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apatite Formation and Biocompatibility of a Low Young's Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water.
    Tanaka H; Mori Y; Noro A; Kogure A; Kamimura M; Yamada N; Hanada S; Masahashi N; Itoi E
    PLoS One; 2016; 11(2):e0150081. PubMed ID: 26914329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of a bioactive graded surface structure on Ti-15Mo-5Zr-3Al alloy by chemical treatment.
    Kim HM; Takadama H; Kokubo T; Nishiguchi S; Nakamura T
    Biomaterials; 2000 Feb; 21(4):353-8. PubMed ID: 10656316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apatite-forming ability of titanium in terms of pH of the exposed solution.
    Pattanayak DK; Yamaguchi S; Matsushita T; Nakamura T; Kokubo T
    J R Soc Interface; 2012 Sep; 9(74):2145-55. PubMed ID: 22417910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid.
    Chen X; Nouri A; Li Y; Lin J; Hodgson PD; Wen C
    Biotechnol Bioeng; 2008 Oct; 101(2):378-87. PubMed ID: 18454499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of heat treatments on apatite-forming ability of NaOH- and HCl-treated titanium metal.
    Pattanayak DK; Yamaguchi S; Matsushita T; Kokubo T
    J Mater Sci Mater Med; 2011 Feb; 22(2):273-8. PubMed ID: 21188481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graded surface structure of bioactive titanium prepared by chemical treatment.
    Kim HM; Miyaji F; Kokubo T; Nishiguchi S; Nakamura T
    J Biomed Mater Res; 1999 May; 45(2):100-7. PubMed ID: 10397963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apatite formation on zirconium metal treated with aqueous NaOH.
    Uchida M; Kim HM; Miyaji F; Kokubo T; Nakamura T
    Biomaterials; 2002 Jan; 23(1):313-7. PubMed ID: 11762851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys.
    Kizuki T; Matsushita T; Kokubo T
    J Mater Sci Mater Med; 2014 Jul; 25(7):1737-46. PubMed ID: 24682896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface modification of a Ti-7.5Mo alloy using NaOH treatment and Bioglass coating.
    Ho WF; Lai CH; Hsu HC; Wu SC
    J Mater Sci Mater Med; 2010 May; 21(5):1479-88. PubMed ID: 20069344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic apatite formation on chemically treated titanium.
    Jonásová L; Müller FA; Helebrant A; Strnad J; Greil P
    Biomaterials; 2004; 25(7-8):1187-94. PubMed ID: 14643592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface treatment, corrosion behavior, and apatite-forming ability of Ti-45Nb implant alloy.
    Gostin PF; Helth A; Voss A; Sueptitz R; Calin M; Eckert J; Gebert A
    J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):269-78. PubMed ID: 23166048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.