These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 368587)

  • 1. Analysis of regulatory mechanisms controlling the activity of the hexitol transport systems in Escherichia coli K12.
    Lengeler J; Steinberger H
    Mol Gen Genet; 1978 Nov; 167(1):75-82. PubMed ID: 368587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the regulatory mechanisms controlling the synthesis of the hexitol transport systems in Escherichia coli K12.
    Lengeler J; Steinberger H
    Mol Gen Genet; 1978 Aug; 164(2):163-9. PubMed ID: 360044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping.
    Lengeler J
    J Bacteriol; 1975 Oct; 124(1):26-38. PubMed ID: 1100602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nature and properties of hexitol transport systems in Escherichia coli.
    Lengeler J
    J Bacteriol; 1975 Oct; 124(1):39-47. PubMed ID: 1100608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of hexitol catabolism in Streptococcus mutans.
    Dills SS; Seno S
    J Bacteriol; 1983 Feb; 153(2):861-6. PubMed ID: 6401708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vectorial and nonvectorial transphosphorylation catalyzed by enzymes II of the bacterial phosphotransferase system.
    Saier MH; Schmidt MR
    J Bacteriol; 1981 Jan; 145(1):391-7. PubMed ID: 6780516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants.
    Koch S; Sutrina SL; Wu LF; Reizer J; Schnetz K; Rak B; Saier MH
    J Bacteriol; 1996 Feb; 178(4):1126-33. PubMed ID: 8576048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmid-directed synthesis of enzymes required for D-mannitol transport and utilization in Escherichia coli.
    Lee CA; Jacobson GR; Saier MH
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7336-40. PubMed ID: 6801648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corrected sequence of the mannitol (mtl) operon in Escherichia coli.
    Jiang W; Wu LF; Tomich J; Saier MH; Niehaus WG
    Mol Microbiol; 1990 Nov; 4(11):2003-6. PubMed ID: 1964486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The general PTS component HPr determines the preference for glucose over mannitol.
    Choe M; Park YH; Lee CR; Kim YR; Seok YJ
    Sci Rep; 2017 Feb; 7():43431. PubMed ID: 28225088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial characterization of hexose and hexitol phosphoenolpyruvate-dependent phosphotransferases of Staphylococcus aureus.
    Friedman SA; Hays JB
    J Bacteriol; 1977 Jun; 130(3):991-9. PubMed ID: 863862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar phosphate:sugar transphosphorylation coupled to exchange group translocation catalyzed by the enzyme II complexes of the phosphoenolpyruvate:sugar phosphotransferase system in membrane vesicles of Escherichia coli.
    Saier MH; Cox DF; Moczydlowski EG
    J Biol Chem; 1977 Dec; 252(24):8908-16. PubMed ID: 336624
    [No Abstract]   [Full Text] [Related]  

  • 13. Sugar uptake and carbon catabolite repression in Bacillus megaterium strains with inactivated ptsHI.
    Wagner A; Küster-Schöck E; Hillen W
    J Mol Microbiol Biotechnol; 2000 Oct; 2(4):587-92. PubMed ID: 11075936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System.
    Jeckelmann JM; Erni B
    Subcell Biochem; 2019; 92():223-274. PubMed ID: 31214989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mannitol-specific phosphoenolpyruvate-dependent phosphotransferase system of Enterococcus faecalis: molecular cloning and nucleotide sequences of the enzyme IIIMtl gene and the mannitol-1-phosphate dehydrogenase gene, expression in Escherichia coli, and comparison of the gene products with similar enzymes.
    Fischer R; von Strandmann RP; Hengstenberg W
    J Bacteriol; 1991 Jun; 173(12):3709-15. PubMed ID: 1904856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose catabolite repression in Escherichia coli K12 mutants defective in methyl-alpha-d-glucoside transport.
    Bourd GI; Erlagaeva RS; Bolshakova TN; Gershanovitch VN
    Eur J Biochem; 1975 May; 53(2):419-27. PubMed ID: 1095369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Carbohydrate transport systems in Escherichia coli and regulation of catabolism].
    Gershanovich VN
    Vestn Ross Akad Med Nauk; 2000; (3):49-53. PubMed ID: 10765737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of GutQ from Escherichia coli as a D-arabinose 5-phosphate isomerase.
    Meredith TC; Woodard RW
    J Bacteriol; 2005 Oct; 187(20):6936-42. PubMed ID: 16199563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mutation fruB in the fructose regulon affecting beta-galactosidase synthesis and adenylate cyclase activity of E. coli K12].
    Bol'shakova TN; Erlagaeva RS; Dobrynina OIu; Gershanovich VN
    Mol Gen Mikrobiol Virusol; 1988 Mar; (3):33-9. PubMed ID: 2841594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc.
    Hogema BM; Arents JC; Bader R; Eijkemans K; Yoshida H; Takahashi H; Aiba H; Postma PW
    Mol Microbiol; 1998 Nov; 30(3):487-98. PubMed ID: 9822815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.