BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36859006)

  • 1. Development of a cryogenic passive-scattering-type near-field optical microscopy system.
    Lin KT; Weng Q; Kim S; Komiyama S; Kajihara Y
    Rev Sci Instrum; 2023 Feb; 94(2):023701. PubMed ID: 36859006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive near-field imaging via grating-based spectroscopy.
    Sakuma R; Lin KT; Kim S; Kimura F; Kajihara Y
    Rev Sci Instrum; 2022 Jan; 93(1):013704. PubMed ID: 35104953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high signal-to-noise ratio passive near-field microscope equipped with a helium-free cryostat.
    Lin KT; Komiyama S; Kim S; Kawamura KI; Kajihara Y
    Rev Sci Instrum; 2017 Jan; 88(1):013706. PubMed ID: 28147653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive dual-probe near-field microscopy.
    Sakuma R; Nagai Y; Nakajima H; Lin KT; Kajihara Y
    Rev Sci Instrum; 2022 Nov; 93(11):113708. PubMed ID: 36461468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cryogenic scattering-type scanning near-field optical microscope.
    Yang HU; Hebestreit E; Josberger EE; Raschke MB
    Rev Sci Instrum; 2013 Feb; 84(2):023701. PubMed ID: 23464212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction.
    Hillenbrand R
    Ultramicroscopy; 2004 Aug; 100(3-4):421-7. PubMed ID: 15231334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-terahertz scanning near-field optical microscope using a quartz tuning fork based probe.
    Li X; Sun J; Jin L; Shangguan Y; Chen K; Qin H
    Opt Express; 2023 Jun; 31(12):19754-19765. PubMed ID: 37381384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal near-field scattering characteristics for dielectric materials.
    Sakuma R; Lin KT; Kajihara Y
    Sci Rep; 2023 Oct; 13(1):17595. PubMed ID: 37845277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sensitive near-field microscope for thermal radiation.
    Kajihara Y; Kosaka K; Komiyama S
    Rev Sci Instrum; 2010 Mar; 81(3):033706. PubMed ID: 20370184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale thermal imaging of hot electrons by cryogenic terahertz scanning noise microscopy.
    Weng Q; Deng W; Komiyama S; Sasaki T; Imada H; Lu W; Hosako I; Kim Y
    Rev Sci Instrum; 2024 Jun; 95(6):. PubMed ID: 38888400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tip size dependence of passive near-field microscopy.
    Lin KT; Komiyama S; Kajihara Y
    Opt Lett; 2016 Feb; 41(3):484-7. PubMed ID: 26907403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tomographic and multimodal scattering-type scanning near-field optical microscopy with peak force tapping mode.
    Wang H; Wang L; Jakob DS; Xu XG
    Nat Commun; 2018 May; 9(1):2005. PubMed ID: 29784951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A passive long-wavelength infrared microscope with a highly sensitive phototransistor.
    Kajihara Y; Komiyama S; Nickels P; Ueda T
    Rev Sci Instrum; 2009 Jun; 80(6):063702. PubMed ID: 19566205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature sensitivity of scattering-type near-field nanoscopic imaging in the visible range.
    Jarzembski A; Shaskey C; Murdick RA; Park K
    Appl Opt; 2019 Mar; 58(8):1978-1983. PubMed ID: 30874064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modern Scattering-Type Scanning Near-Field Optical Microscopy for Advanced Material Research.
    Chen X; Hu D; Mescall R; You G; Basov DN; Dai Q; Liu M
    Adv Mater; 2019 Jun; 31(24):e1804774. PubMed ID: 30932221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-Scattering Near-Field Microscope for Correlative Nanoimaging of SERS and Electromagnetic Hotspots.
    Kusch P; Mastel S; Mueller NS; Morquillas Azpiazu N; Heeg S; Gorbachev R; Schedin F; Hübner U; Pascual JI; Reich S; Hillenbrand R
    Nano Lett; 2017 Apr; 17(4):2667-2673. PubMed ID: 28323430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional near-field analysis through peak force scattering-type near-field optical microscopy.
    Wang H; Li J; Edgar JH; Xu XG
    Nanoscale; 2020 Jan; 12(3):1817-1825. PubMed ID: 31899464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping Free-Carriers in Multijunction Silicon Nanowires Using Infrared Near-Field Optical Microscopy.
    Ritchie ET; Hill DJ; Mastin TM; Deguzman PC; Cahoon JF; Atkin JM
    Nano Lett; 2017 Nov; 17(11):6591-6597. PubMed ID: 29032679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-field infrared nanoscopic study of EUV- and e-beam-exposed hydrogen silsesquioxane photoresist.
    Kim J; Lee JK; Chae B; Ahn J; Lee S
    Nano Converg; 2022 Dec; 9(1):53. PubMed ID: 36459274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging of near-field interference patterns by aperture-type SNOM - influence of illumination wavelength and polarization state.
    Dvořák P; Édes Z; Kvapil M; Šamořil T; Ligmajer F; Hrtoň M; Kalousek R; Křápek V; Dub P; Spousta J; Varga P; Šikola T
    Opt Express; 2017 Jul; 25(14):16560-16573. PubMed ID: 28789159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.