These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 36859010)
1. Machine learning for detection of 3D features using sparse x-ray tomographic reconstruction. Wolfe BT; Falato MJ; Zhang X; Nguyen-Fotiadis NTT; Sauppe JP; Kozlowski PM; Keiter PA; Reinovsky RE; Batha SA; Wang Z Rev Sci Instrum; 2023 Feb; 94(2):023504. PubMed ID: 36859010 [TBL] [Abstract][Full Text] [Related]
2. Neural network for 3D inertial confinement fusion shell reconstruction from single radiographs. Wolfe BT; Han Z; Ben-Benjamin JS; Kline JL; Montgomery DS; Merritt EC; Keiter PA; Loomis E; Patterson BM; Kuettner L; Wang Z Rev Sci Instrum; 2021 Mar; 92(3):033547. PubMed ID: 33820106 [TBL] [Abstract][Full Text] [Related]
3. 3D reconstruction of an inertial-confinement fusion implosion with neural networks using multiple heterogeneous data sources. Kunimune JH; Casey DT; Kustowski B; Geppert-Kleinrath V; Divol L; Fittinghoff DN; Volegov PL; Kruse MKG; Gaffney JA; Nora RC; Frenje JA Rev Sci Instrum; 2024 Jul; 95(7):. PubMed ID: 38958513 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional reconstruction of neutron, gamma-ray, and x-ray sources using a cylindrical-harmonics expansion. Volegov PL; Batha SH; Fittinghoff DN; Danly CR; Geppert-Kleinrath V; Wilde CH; Zylstra AB Rev Sci Instrum; 2021 Mar; 92(3):033508. PubMed ID: 33820056 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega. Danly CR; Day TH; Fittinghoff DN; Herrmann H; Izumi N; Kim YH; Martinez JI; Merrill FE; Schmidt DW; Simpson RA; Volegov PL; Wilde CH Rev Sci Instrum; 2015 Apr; 86(4):043503. PubMed ID: 25933858 [TBL] [Abstract][Full Text] [Related]
6. First look at neutron emission shape characteristics of ignition hotspots at the National Ignition Facility (invited). Durocher M; Geppert-Kleinrath V; Danly CR; Wilde CH; Saavedra GJ; Freeman MS; Fatherley VE; Mendoza EF; Tafoya LR; Volegov PL; Fittinghoff DN; Rubery M Rev Sci Instrum; 2024 Sep; 95(9):. PubMed ID: 39297760 [TBL] [Abstract][Full Text] [Related]
7. ICF-PR-Net: a deep phase retrieval neural network for X-ray phase contrast imaging of inertial confinement fusion capsules. Shi K; Zhang X; Wang X; Xu J; Mu B; Yan J; Wang F; Ding Y; Wang Z Opt Express; 2024 Apr; 32(8):14356-14376. PubMed ID: 38859383 [TBL] [Abstract][Full Text] [Related]
9. X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube. MacPhee AG; Casey DT; Clark DS; Felker S; Field JE; Haan SW; Hammel BA; Kroll J; Landen OL; Martinez DA; Michel P; Milovich J; Moore A; Nikroo A; Rice N; Robey HF; Smalyuk VA; Stadermann M; Weber CR Phys Rev E; 2017 Mar; 95(3-1):031204. PubMed ID: 28415208 [TBL] [Abstract][Full Text] [Related]
10. A neural network with encoded visible edge prior for limited-angle computed tomography reconstruction. Ma G; Zhang Y; Zhao X; Wang T; Li H Med Phys; 2021 Oct; 48(10):6464-6481. PubMed ID: 34482570 [TBL] [Abstract][Full Text] [Related]
11. Prior information-based high-resolution tomography image reconstruction from a single digitally reconstructed radiograph. Lu S; Li S; Wang Y; Zhang L; Hu Y; Li B Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35100576 [TBL] [Abstract][Full Text] [Related]
12. Using distributions to understand neutron and x-ray production in ICF ignition capsules and other high energy density plasmas. Nilsen J; Managan RA; Zimmerman GB Rev Sci Instrum; 2021 Dec; 92(12):123511. PubMed ID: 34972450 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo N-Particle forward modeling for density reconstruction of double shell capsule radiographs. Byvank T; Meyerhofer DD; Keiter PA; Sagert I; Martinez DA; Montgomery DS; Loomis EN Rev Sci Instrum; 2022 Dec; 93(12):123506. PubMed ID: 36586920 [TBL] [Abstract][Full Text] [Related]
14. Fill-tube-induced mass perturbations on x-ray-driven, ignition-scale, inertial-confinement-fusion capsule shells and the implications for ignition experiments. Bennett GR; Herrmann MC; Edwards MJ; Spears BK; Back CA; Breden EW; Christenson PJ; Cuneo ME; Dannenburg KL; Frederick C; Keller KL; Mulville TD; Nikroo A; Peterson K; Porter JL; Russell CO; Sinars DB; Smith IC; Stamm RM; Vesey RA Phys Rev Lett; 2007 Nov; 99(20):205003. PubMed ID: 18233149 [TBL] [Abstract][Full Text] [Related]
15. First Measurements of Fuel-Ablator Interface Instability Growth in Inertial Confinement Fusion Implosions on the National Ignition Facility. Weber CR; Döppner T; Casey DT; Bunn TL; Carlson LC; Dylla-Spears RJ; Kozioziemski BJ; MacPhee AG; Nikroo A; Robey HF; Sater JD; Smalyuk VA Phys Rev Lett; 2016 Aug; 117(7):075002. PubMed ID: 27563971 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance. Haines BM; Grinstein FF; Fincke JR Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053302. PubMed ID: 25353910 [TBL] [Abstract][Full Text] [Related]
17. Thin shell, high velocity inertial confinement fusion implosions on the national ignition facility. Ma T; Hurricane OA; Callahan DA; Barrios MA; Casey DT; Dewald EL; Dittrich TR; Döppner T; Haan SW; Hinkel DE; Berzak Hopkins LF; Le Pape S; MacPhee AG; Pak A; Park HS; Patel PK; Remington BA; Robey HF; Salmonson JD; Springer PT; Tommasini R; Benedetti LR; Bionta R; Bond E; Bradley DK; Caggiano J; Celliers P; Cerjan CJ; Church JA; Dixit S; Dylla-Spears R; Edgell D; Edwards MJ; Field J; Fittinghoff DN; Frenje JA; Gatu Johnson M; Grim G; Guler N; Hatarik R; Herrmann HW; Hsing WW; Izumi N; Jones OS; Khan SF; Kilkenny JD; Knauer J; Kohut T; Kozioziemski B; Kritcher A; Kyrala G; Landen OL; MacGowan BJ; Mackinnon AJ; Meezan NB; Merrill FE; Moody JD; Nagel SR; Nikroo A; Parham T; Ralph JE; Rosen MD; Rygg JR; Sater J; Sayre D; Schneider MB; Shaughnessy D; Spears BK; Town RP; Volegov PL; Wan A; Widmann K; Wilde CH; Yeamans C Phys Rev Lett; 2015 Apr; 114(14):145004. PubMed ID: 25910132 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional electron temperature measurement of inertial confinement fusion hotspots using x-ray emission tomography. Wong KW; Bachmann B Rev Sci Instrum; 2022 Jul; 93(7):073501. PubMed ID: 35922317 [TBL] [Abstract][Full Text] [Related]
19. Evidence of Three-Dimensional Asymmetries Seeded by High-Density Carbon-Ablator Nonuniformity in Experiments at the National Ignition Facility. Casey DT; MacGowan BJ; Sater JD; Zylstra AB; Landen OL; Milovich J; Hurricane OA; Kritcher AL; Hohenberger M; Baker K; Le Pape S; Döppner T; Weber C; Huang H; Kong C; Biener J; Young CV; Haan S; Nora RC; Ross S; Robey H; Stadermann M; Nikroo A; Callahan DA; Bionta RM; Hahn KD; Moore AS; Schlossberg D; Bruhn M; Sequoia K; Rice N; Farrell M; Wild C Phys Rev Lett; 2021 Jan; 126(2):025002. PubMed ID: 33512229 [TBL] [Abstract][Full Text] [Related]
20. 2D X-ray radiography of imploding capsules at the national ignition facility. Rygg JR; Jones OS; Field JE; Barrios MA; Benedetti LR; Collins GW; Eder DC; Edwards MJ; Kline JL; Kroll JJ; Landen OL; Ma T; Pak A; Peterson JL; Raman K; Town RP; Bradley DK Phys Rev Lett; 2014 May; 112(19):195001. PubMed ID: 24877944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]