These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36859026)

  • 1. Apparatus for measurement of thermoelectric properties of a single leg under large temperature differences.
    Naithani H; Ziolkowski P; Dasgupta T
    Rev Sci Instrum; 2023 Feb; 94(2):025104. PubMed ID: 36859026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High temperature Z-meter setup for characterizing thermoelectric material under large temperature gradient.
    Amatya R; Mayer PM; Ram RJ
    Rev Sci Instrum; 2012 Jul; 83(7):075117. PubMed ID: 22852734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelectric properties and efficiency measurements under large temperature differences.
    Muto A; Kraemer D; Hao Q; Ren ZF; Chen G
    Rev Sci Instrum; 2009 Sep; 80(9):093901. PubMed ID: 19791947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generic Approach for Contacting Thermoelectric Solid Solutions: Case Study in n- and p-Type Mg
    Goyal GK; Dasgupta T
    ACS Appl Mater Interfaces; 2021 May; 13(17):20754-20762. PubMed ID: 33896180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing High-Performance and Low-Cost Paint Thermoelectric Materials for Low-Midtemperature Applications.
    Yilmaz M; Yusuf A; Gurkan K; Ballikaya S
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12661-12671. PubMed ID: 38427785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Material Properties and Device Output Performance of a Miniaturized Flexible Thermoelectric Generator Using Scalable Synthesis of Bi
    Yuan Z; Zhao X; Wang C; Hang S; Li M; Liu Y
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of the Dopant Species on the Thermomechanical Material Properties of Thermoelectric Mg
    Castillo-Hernández G; Müller E; de Boor J
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials.
    Fu Q; Xiong Y; Zhang W; Xu D
    Rev Sci Instrum; 2017 Sep; 88(9):095111. PubMed ID: 28964241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental characterization of a commercial TEG device under mimicked operating conditions.
    Bottega A; Campagnoli E; Dongiovanni C; Giaretto V
    Nanotechnology; 2022 Dec; 34(8):. PubMed ID: 36368031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of phonon transport by the formation of the Al
    Park NW; Ahn JY; Park TH; Lee JH; Lee WY; Cho K; Yoon YG; Choi CJ; Park JS; Lee SK
    Nanoscale; 2017 Jun; 9(21):7027-7036. PubMed ID: 28368061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization Design and Performance Study of Wearable Thermoelectric Device Using Phase Change Material as Heat Sink.
    Xin J; Xu G; Guo T; Nan B
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrepancy between Constant Properties Model and Temperature-Dependent Material Properties for Performance Estimation of Thermoelectric Generators.
    Ponnusamy P; de Boor J; Müller E
    Entropy (Basel); 2020 Oct; 22(10):. PubMed ID: 33286897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices.
    Kraemer D; Chen G
    Rev Sci Instrum; 2014 Apr; 85(4):045107. PubMed ID: 24784659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An apparatus for concurrent measurement of thermoelectric material parameters.
    Kallaher RL; Latham CA; Sharifi F
    Rev Sci Instrum; 2013 Jan; 84(1):013907. PubMed ID: 23387668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Electrical Transport Properties via Defect Control for Screen-Printed Bi
    Feng J; Zhu W; Zhang Z; Cao L; Yu Y; Deng Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16630-16638. PubMed ID: 32196301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully automated measurement setup for non-destructive characterization of thermoelectric materials near room temperature.
    Schwyter ES; Helbling T; Glatz W; Hierold C
    Rev Sci Instrum; 2012 Jul; 83(7):074904. PubMed ID: 22852715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: application to pure copper, platinum, tungsten, and nickel at very high temperatures.
    Abadlia L; Gasser F; Khalouk K; Mayoufi M; Gasser JG
    Rev Sci Instrum; 2014 Sep; 85(9):095121. PubMed ID: 25273786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and Theoretical Investigation of the Effect of Filler Material on the Performance of Flexible and Rigid Thermoelectric Generators.
    Yusuf A; Demirci Y; Maras T; Moon SE; Pil-Im J; Kim JH; Ballikaya S
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61275-61285. PubMed ID: 34905915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformal High-Power-Density Half-Heusler Thermoelectric Modules: A Pathway toward Practical Power Generators.
    Li W; Nozariasbmarz A; Kishore RA; Kang HB; Dettor C; Zhu H; Poudel B; Priya S
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53935-53944. PubMed ID: 34698486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.