These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36859031)

  • 1. Integrating test device and method for creep failure and ultrasonic response of methane hydrate-bearing sediments.
    Hu Q; Li Y; Sun X; Chen M; Bu Q; Gong B
    Rev Sci Instrum; 2023 Feb; 94(2):025105. PubMed ID: 36859031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of triaxial testing and pore-scale visualization of methane hydrate bearing sediments.
    Seol Y; Lei L; Choi JH; Jarvis K; Hill D
    Rev Sci Instrum; 2019 Dec; 90(12):124504. PubMed ID: 31893836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Ladetes"-A novel device to test deformation behaviors of hydrate-bearing sediments.
    Li Y; Chen M; Guang S; Zhang Y; Dong L; Hu G; Wu N
    Rev Sci Instrum; 2022 Dec; 93(12):125004. PubMed ID: 36586902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore-scale deformation characteristics of hydrate-bearing sediments with gas replacement.
    Huang L; Wu P; Wang Y; Song Y; Li Y
    Sci Total Environ; 2024 Dec; 954():176464. PubMed ID: 39317260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triaxial Creep Mechanical Behaviors and Creep Damage Model of Dolomitic Limestone Material under Multi-Stage Incremental Loading.
    Wang X; Wei W; Niu Y; Xia C; Song L; Han G; Zhu Z
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic characterization for creep behaviors of marine sandy hydrate-bearing sediment.
    Li Y; Hu Q; Wu N; Wang H; Sun X; Hu G; Sun Z; Jiang Y
    Sci Rep; 2023 Dec; 13(1):22199. PubMed ID: 38097693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments.
    Seol Y; Choi JH; Dai S
    Rev Sci Instrum; 2014 Aug; 85(8):084501. PubMed ID: 25173288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated experimental system and method for gas hydrate-bearing sediments considering stress-seepage coupling.
    Zhao Y; Kong L; Hu G; Liu L; Liu J; Ji Y; Sang S
    Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37796098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linkage-based device for creep testing of coal rock.
    Zhang D; Ye C; Zhang X; Qi X; Yang Y; Li X
    Rev Sci Instrum; 2020 Jan; 91(1):015108. PubMed ID: 32012553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a coupled geophysical-geothermal scheme for quantification of hydrates in gas hydrate-bearing permafrost sediments.
    Vasheghani Farahani M; Hassanpouryouzband A; Yang J; Tohidi B
    Phys Chem Chem Phys; 2021 Nov; 23(42):24249-24264. PubMed ID: 34668900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated test system for interfacial strength and morphology of multi-type hydrate-bearing sediments.
    Zhang Y; Li Y; Wu N; Li L; Ji Y; Dong L; Sun Z; Ke K
    Rev Sci Instrum; 2024 Sep; 95(9):. PubMed ID: 39225576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures.
    Yang L; Zhou W; Xue K; Wei R; Ling Z
    Rev Sci Instrum; 2018 May; 89(5):054904. PubMed ID: 29864831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creep behavior and long-term strength characteristics of pre-peak damaged sandstone under conventional triaxial compression.
    Hou R; Cui Q; Wu H; Shi Y
    Sci Rep; 2023 Mar; 13(1):3850. PubMed ID: 36890277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfocus x-ray computed tomography based gas hydrate triaxial testing apparatus.
    Li Y; Wu P; Liu W; Sun X; Cui Z; Song Y
    Rev Sci Instrum; 2019 May; 90(5):055106. PubMed ID: 31153294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore-scale observations of natural hydrate-bearing sediments via pressure core sub-coring and micro-CT scanning.
    Lei L; Park T; Jarvis K; Pan L; Tepecik I; Zhao Y; Ge Z; Choi JH; Gai X; Galindo-Torres SA; Boswell R; Dai S; Seol Y
    Sci Rep; 2022 Mar; 12(1):3471. PubMed ID: 35236868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Numerical Investigation into the Effect of Homogeneity on the Time-Dependent Behavior of Brittle Rock.
    Chen HZ; Shao ZS; Jin DD; Zhang Z; Zhou DB
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformation and instability properties of cemented gangue backfill column under step-by-step load in constructional backfill mining.
    Guo Y; Ran H; Feng G; Du X; Zhao Y; Xie W
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):2325-2341. PubMed ID: 34370192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Nanoindentation to Characterize the Mechanical and Creep Properties of Shale: Load and Loading Strain Rate Effects.
    Wang J; Yang C; Liu Y; Li Y; Xiong Y
    ACS Omega; 2022 Apr; 7(16):14317-14331. PubMed ID: 35573216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical creep instability of nanocrystalline methane hydrates.
    Cao P; Sheng J; Wu J; Ning F
    Phys Chem Chem Phys; 2021 Feb; 23(5):3615-3626. PubMed ID: 33524096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction Models of Shear Parameters and Dynamic Creep Instability for Asphalt Mixture under Different High Temperatures.
    Lv J; Zhang X
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.