These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36859091)

  • 1. Molecular understanding of the Helmholtz capacitance difference between Cu(100) and graphene electrodes.
    Li XY; Jin XF; Yang XH; Wang X; Le JB; Cheng J
    J Chem Phys; 2023 Feb; 158(8):084701. PubMed ID: 36859091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular origin of negative component of Helmholtz capacitance at electrified Pt(111)/water interface.
    Le JB; Fan QY; Li JQ; Cheng J
    Sci Adv; 2020 Oct; 6(41):. PubMed ID: 33028519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Effects of Electrode Material, Single Crystal Facet, and Electrolyte Ion on the Helmholtz Capacitance of Metal/Aqueous Solution Interfaces.
    Wang X; Wang Y; Kuang Y; Le JB
    J Phys Chem Lett; 2023 Sep; 14(35):7833-7839. PubMed ID: 37624858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Electrified Pt(111)-H
    Le JB; Chen A; Li L; Xiong JF; Lan J; Liu YP; Iannuzzi M; Cheng J
    JACS Au; 2021 May; 1(5):569-577. PubMed ID: 34467320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of Asymmetric Electric Double Layers at Electrified Oxide/Electrolyte Interfaces.
    Jia M; Zhang C; Cheng J
    J Phys Chem Lett; 2021 May; 12(19):4616-4622. PubMed ID: 33973792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication: Computing the Helmholtz capacitance of charged insulator-electrolyte interfaces from the supercell polarization.
    Zhang C
    J Chem Phys; 2018 Jul; 149(3):031103. PubMed ID: 30037260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors.
    Chen J; Han Y; Kong X; Deng X; Park HJ; Guo Y; Jin S; Qi Z; Lee Z; Qiao Z; Ruoff RS; Ji H
    Angew Chem Int Ed Engl; 2016 Oct; 55(44):13822-13827. PubMed ID: 27701817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of Dielectric Screening to the Total Capacitance of Few-Layer Graphene Electrodes.
    Zhan C; Jiang DE
    J Phys Chem Lett; 2016 Mar; 7(5):789-94. PubMed ID: 26884129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular understanding of cation effects on double layers and their significance to CO-CO dimerization.
    Le JB; Chen A; Kuang Y; Cheng J
    Natl Sci Rev; 2023 Sep; 10(9):nwad105. PubMed ID: 37842071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General Capacitance Upper Limit and Its Manifestation for Aqueous Graphene Interfaces.
    Butko AV; Butko VY; Kumzerov YA
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37446037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical Double Layer of Supported Atomically Thin Materials.
    Kwon SS; Choi J; Heiranian M; Kim Y; Chang WJ; Knapp PM; Wang MC; Kim JM; Aluru NR; Park WI; Nam S
    Nano Lett; 2019 Jul; 19(7):4588-4593. PubMed ID: 31203634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling of Surface Chemistry and Electric Double Layer at TiO
    Zhang C; Hutter J; Sprik M
    J Phys Chem Lett; 2019 Jul; 10(14):3871-3876. PubMed ID: 31241948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors.
    Vatamanu J; Ni X; Liu F; Bedrov D
    Nanotechnology; 2015 Nov; 26(46):464001. PubMed ID: 26511198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation between Double Layer Structure, Capacitance, and Surface Tension in Electrowetting of Graphene and Aqueous Electrolytes.
    Wei Z; Elliott JD; Papaderakis AA; Dryfe RAW; Carbone P
    J Am Chem Soc; 2024 Jan; 146(1):760-772. PubMed ID: 38153698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of doping and solvent interactions on the electronic and capacitive properties of metal-supported graphene: A combined DFT and AIMD study.
    Elshazly MK; Huzayyin A; Dawson F
    J Chem Phys; 2023 Dec; 159(22):. PubMed ID: 38078528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origins and Implications of Interfacial Capacitance Enhancements in C
    Zhan C; Pham TA; Cerón MR; Campbell PG; Vedharathinam V; Otani M; Jiang DE; Biener J; Wood BC; Biener M
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36860-36865. PubMed ID: 30296045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of Electric Double Layer Capacitance Using Dielectrophoresis-Based Particle Manipulation.
    Zhang S; Zhang Z; Chen S; Zhu R
    Anal Chem; 2021 Apr; 93(14):5882-5889. PubMed ID: 33797871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte.
    Vatamanu J; Borodin O; Smith GD
    Phys Chem Chem Phys; 2010 Jan; 12(1):170-82. PubMed ID: 20024457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the energy storage mechanism in graphene-based nonaqueous electrochemical capacitors by gap-enhanced Raman spectroscopy.
    Yin XT; You EM; Zhou RY; Zhu LH; Wang WW; Li KX; Wu DY; Gu Y; Li JF; Mao BW; Yan JW
    Nat Commun; 2024 Jul; 15(1):5624. PubMed ID: 38965231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of applied voltage on water at a gold electrode interface from
    Goldsmith ZK; Calegari Andrade MF; Selloni A
    Chem Sci; 2021 Mar; 12(16):5865-5873. PubMed ID: 34168811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.