These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36859095)

  • 1. Reformulation of the Ornstein-Zernike relation for a homogeneous isotropic fluid of spherical symmetry.
    Rivera-Cerecero SA; Lozada-Cassou M
    J Chem Phys; 2023 Feb; 158(8):084103. PubMed ID: 36859095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of a Hard Sphere Fluid in a Disordered Polymerized Matrix: Application of the Replica Ornstein-Zernike Equations.
    Pizio O; Trokhymchuk A; Henderson D; Labik S
    J Colloid Interface Sci; 1997 Jul; 191(1):86-94. PubMed ID: 9241207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binary mixture of nonadditive hard spheres adsorbed in a slit pore: a study of the population inversion by the integral equations theory.
    Ayadim A; Amokrane S
    J Phys Chem B; 2010 Dec; 114(50):16824-31. PubMed ID: 21090779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replica Ornstein-Zernike self-consistent theory for mixtures in random pores.
    Pellicane G; Caccamo C; Wilson DS; Lee LL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061202. PubMed ID: 15244549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards composite spheres as building blocks for structured molecules.
    Lee LL; Pellicane G
    J Phys Condens Matter; 2016 Oct; 28(41):414008. PubMed ID: 27546819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase transitions in highly asymmetric binary hard-sphere fluids: Fluid-fluid binodal from a two-component mixture theory.
    Ayadim A; Amokrane S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021106. PubMed ID: 17025392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency domain photon migration measurements of dense monodisperse charged lattices and analysis using solutions of Ornstein Zernike equations.
    Dali SS; Sevick-Muraca EM
    J Colloid Interface Sci; 2012 Nov; 386(1):114-20. PubMed ID: 22909960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A self-consistent Ornstein-Zernike approximation for a fluid with a screened power series interaction.
    Yasutomi M
    J Chem Phys; 2010 Oct; 133(15):154115. PubMed ID: 20969378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-Vapor Coexistence in the Screened Coulomb (Yukawa) Hard Sphere Binary Mixture in Disordered Porous Media: The Mean Spherical Approximation.
    Trokhymchuk A; Orozco GA; Pizio O; Vlachy V
    J Colloid Interface Sci; 1998 Nov; 207(2):379-385. PubMed ID: 9792783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integral equation study of an ideal Ising mixture.
    Fenz W; Omelyan IP; Folk R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056121. PubMed ID: 16383702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A practical integral equation for the structure and thermodynamics of hard sphere Coulomb fluids.
    Zwanikken JW; Jha PK; Olvera de la Cruz M
    J Chem Phys; 2011 Aug; 135(6):064106. PubMed ID: 21842925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demixing transition, structure, and depletion forces in binary mixtures of hard-spheres: the role of bridge functions.
    López-Sánchez E; Estrada-Álvarez CD; Pérez-Ángel G; Méndez-Alcaraz JM; González-Mozuelos P; Castañeda-Priego R
    J Chem Phys; 2013 Sep; 139(10):104908. PubMed ID: 24050366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of ternary additive hard-sphere fluid mixtures.
    Malijevský A; Malijevský A; Yuste SB; Santos A; López de Haro M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061203. PubMed ID: 12513273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple analysis of scattering data with the Ornstein-Zernike equation.
    Kats EI; Muratov AR
    Phys Rev E; 2018 Jan; 97(1-1):012610. PubMed ID: 29448359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pair correlation functions in nematics: Free-energy functional and isotropic-nematic transition.
    Mishra P; Singh Y
    Phys Rev Lett; 2006 Oct; 97(17):177801. PubMed ID: 17155507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modified version of a self-consistent Ornstein-Zernike approximation for a fluid with a one-Yukawa pair potential.
    Yasutomi M
    J Phys Condens Matter; 2006 Aug; 18(32):7569-77. PubMed ID: 21690870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved radial distribution functions for Coulomb charged fluid based on first-order mean spherical approximation.
    Xu Q; Wu K; Mi J; Zhong C
    J Chem Phys; 2008 Jun; 128(21):214508. PubMed ID: 18537434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing a new closure theory based on the third-order Ornstein-Zernike equation and a study of the adsorption of simple fluids.
    Lee LL
    J Chem Phys; 2011 Nov; 135(20):204706. PubMed ID: 22128951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Closure for the Ornstein-Zernike equation with pressure and free energy consistency.
    Tsednee T; Luchko T
    Phys Rev E; 2019 Mar; 99(3-1):032130. PubMed ID: 30999429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the Replica Ornstein-Zernike Equations to Study Submonolayer Adsorption on Energetically Heterogeneous Surfaces.
    Rzysko W; Pizio O; Sokolowski S; Sokolowska Z
    J Colloid Interface Sci; 1999 Nov; 219(1):184-189. PubMed ID: 10527586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.