These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36859151)

  • 1. Anisotropic minimum dissipation subgrid-scale model in hybrid aeroacoustic simulations of human phonation.
    Lasota M; Šidlof P; Maurerlehner P; Kaltenbacher M; Schoder S
    J Acoust Soc Am; 2023 Feb; 153(2):1052. PubMed ID: 36859151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid aeroacoustic approach for the efficient numerical simulation of human phonation.
    Schoder S; Weitz M; Maurerlehner P; Hauser A; Falk S; Kniesburges S; Döllinger M; Kaltenbacher M
    J Acoust Soc Am; 2020 Feb; 147(2):1179. PubMed ID: 32113301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid approach to the computational aeroacoustics of human voice production.
    Šidlof P; Zörner S; Hüppe A
    Biomech Model Mechanobiol; 2015 Jun; 14(3):473-88. PubMed ID: 25288479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Error detection and filtering of incompressible flow simulations for aeroacoustic predictions of human voice.
    Schoder S; Kraxberger F; Falk S; Wurzinger A; Roppert K; Kniesburges S; Döllinger M; Kaltenbacher M
    J Acoust Soc Am; 2022 Sep; 152(3):1425. PubMed ID: 36182323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms.
    Zhao W; Zhang C; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2134-46. PubMed ID: 12430825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an Acoustic Simulation Method during Phonation of the Japanese Vowel /a/ by the Boundary Element Method.
    Shiraishi M; Mishima K; Umeda H
    J Voice; 2021 Jul; 35(4):530-544. PubMed ID: 31889645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-FV-FE Aeroacoustic Larynx Model for Investigation of Functional Based Voice Disorders.
    Falk S; Kniesburges S; Schoder S; Jakubaß B; Maurerlehner P; Echternach M; Kaltenbacher M; Döllinger M
    Front Physiol; 2021; 12():616985. PubMed ID: 33762964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Models of Laryngeal Aerodynamics: Potentials and Numerical Costs.
    Sadeghi H; Kniesburges S; Kaltenbacher M; Schützenberger A; Döllinger M
    J Voice; 2019 Jul; 33(4):385-400. PubMed ID: 29428274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aeroacoustic source characterization in a physical model of phonation.
    McPhail MJ; Campo ET; Krane MH
    J Acoust Soc Am; 2019 Aug; 146(2):1230. PubMed ID: 31472595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.
    Arnela M; Guasch O
    J Acoust Soc Am; 2014 Jan; 135(1):369-79. PubMed ID: 24437777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of head geometry simplifications on acoustic radiation of vowel sounds based on time-domain finite-element simulations.
    Arnela M; Guasch O; Alías F
    J Acoust Soc Am; 2013 Oct; 134(4):2946-54. PubMed ID: 24116430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J; Yousuff Hussaini M; Lee S
    J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element generation of sibilants /s/ and /z/ using random distributions of Kirchhoff vortices.
    Pont A; Guasch O; Arnela M
    Int J Numer Method Biomed Eng; 2020 Feb; 36(2):e3302. PubMed ID: 31883313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx.
    Kucinschi BR; Scherer RC; DeWitt KJ; Ng TT
    J Biomech Eng; 2006 Jun; 128(3):380-90. PubMed ID: 16706587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibro-acoustics response of a simplified glass window excited by the turbulent wake of a quarter-spherocylinder body.
    Yao HD; Davidson L
    J Acoust Soc Am; 2019 May; 145(5):3163. PubMed ID: 31153304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An aeroacoustic approach to phonation.
    McGowan RS
    J Acoust Soc Am; 1988 Feb; 83(2):696-704. PubMed ID: 3351128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element computation of elliptical vocal tract impedances using the two-microphone transfer function method.
    Arnela M; Guasch O
    J Acoust Soc Am; 2013 Jun; 133(6):4197-209. PubMed ID: 23742371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational aeroacoustics of phonation, part II: Effects of flow parameters and ventricular folds.
    Zhang C; Zhao W; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2147-54. PubMed ID: 12430826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Measured and Simulated Supraglottal Acoustic Waves.
    Fraile R; Evdokimova VV; Evgrafova KV; Godino-Llorente JI; Skrelin PA
    J Voice; 2016 Sep; 30(5):518-28. PubMed ID: 26377510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Supraglottal Acoustics on Fluid-Structure Interaction During Human Voice Production.
    Bodaghi D; Jiang W; Xue Q; Zheng X
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33399816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.