These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 36859202)
1. Robustness measurement of multiplex networks based on graph spectrum. Qi M; Chen P; Wu J; Liang Y; Duan X Chaos; 2023 Feb; 33(2):021102. PubMed ID: 36859202 [TBL] [Abstract][Full Text] [Related]
2. The robustness of multiplex networks under layer node-based attack. Zhao DW; Wang LH; Zhi YF; Zhang J; Wang Z Sci Rep; 2016 Apr; 6():24304. PubMed ID: 27075870 [TBL] [Abstract][Full Text] [Related]
3. Reconstruction of multiplex networks via graph embeddings. Kaiser D; Patwardhan S; Kim M; Radicchi F Phys Rev E; 2024 Feb; 109(2-1):024313. PubMed ID: 38491583 [TBL] [Abstract][Full Text] [Related]
5. Pre-emptive spectral graph protection strategies on multiplex social networks. Wijayanto AW; Murata T Appl Netw Sci; 2018; 3(1):5. PubMed ID: 30839797 [TBL] [Abstract][Full Text] [Related]
6. Network robustness of multiplex networks with interlayer degree correlations. Min B; Yi SD; Lee KM; Goh KI Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042811. PubMed ID: 24827297 [TBL] [Abstract][Full Text] [Related]
8. Statistical mechanics of multiplex networks: entropy and overlap. Bianconi G Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062806. PubMed ID: 23848728 [TBL] [Abstract][Full Text] [Related]
9. An Internet-Oriented Multilayer Network Model Characterization and Robustness Analysis Method. Zhang Y; Lu Y; Yang G; Hou D; Luo Z Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010811 [TBL] [Abstract][Full Text] [Related]
11. Fast computation of matrix function-based centrality measures for layer-coupled multiplex networks. Bergermann K; Stoll M Phys Rev E; 2022 Mar; 105(3-1):034305. PubMed ID: 35428049 [TBL] [Abstract][Full Text] [Related]
12. Strength of weak layers in cascading failures on multiplex networks: case of the international trade network. Lee KM; Goh KI Sci Rep; 2016 May; 6():26346. PubMed ID: 27211291 [TBL] [Abstract][Full Text] [Related]
13. Layer degradation triggers an abrupt structural transition in multiplex networks. Cozzo E; de Arruda GF; Rodrigues FA; Moreno Y Phys Rev E; 2019 Jul; 100(1-1):012313. PubMed ID: 31499889 [TBL] [Abstract][Full Text] [Related]
14. Link prediction in real-world multiplex networks via layer reconstruction method. Abdolhosseini-Qomi AM; Jafari SH; Taghizadeh A; Yazdani N; Asadpour M; Rahgozar M R Soc Open Sci; 2020 Jul; 7(7):191928. PubMed ID: 32874603 [TBL] [Abstract][Full Text] [Related]
15. Structural measures for multiplex networks. Battiston F; Nicosia V; Latora V Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032804. PubMed ID: 24730896 [TBL] [Abstract][Full Text] [Related]
16. Mesoscopic structures reveal the network between the layers of multiplex data sets. Iacovacci J; Wu Z; Bianconi G Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042806. PubMed ID: 26565288 [TBL] [Abstract][Full Text] [Related]
17. Application of hyperbolic geometry in link prediction of multiplex networks. Samei Z; Jalili M Sci Rep; 2019 Aug; 9(1):12604. PubMed ID: 31471541 [TBL] [Abstract][Full Text] [Related]
18. Measuring and modeling correlations in multiplex networks. Nicosia V; Latora V Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032805. PubMed ID: 26465526 [TBL] [Abstract][Full Text] [Related]
19. Congestion Induced by the Structure of Multiplex Networks. Solé-Ribalta A; Gómez S; Arenas A Phys Rev Lett; 2016 Mar; 116(10):108701. PubMed ID: 27015514 [TBL] [Abstract][Full Text] [Related]
20. An algebraic topological method for multimodal brain networks comparisons. Simas T; Chavez M; Rodriguez PR; Diaz-Guilera A Front Psychol; 2015; 6():904. PubMed ID: 26217258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]