These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36859207)

  • 1. Coexistence of three heteroclinic cycles and chaos analyses for a class of 3D piecewise affine systems.
    Wang F; Wei Z; Zhang W; Moroz I
    Chaos; 2023 Feb; 33(2):023108. PubMed ID: 36859207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Singular cycles and chaos in a new class of 3D three-zone piecewise affine systems.
    Lu K; Yang Q; Chen G
    Chaos; 2019 Apr; 29(4):043124. PubMed ID: 31042943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Horseshoes in 4-dimensional piecewise affine systems with bifocal heteroclinic cycles.
    Wu T; Yang XS
    Chaos; 2018 Nov; 28(11):113120. PubMed ID: 30501220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melnikov-type method for a class of planar hybrid piecewise-smooth systems with impulsive effect and noise excitation: Heteroclinic orbits.
    Wei Z; Li Y; Moroz I; Zhang W
    Chaos; 2022 Oct; 32(10):103127. PubMed ID: 36319280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the existence of bifocal heteroclinic cycles in a class of four-dimensional piecewise affine systems.
    Wu T; Yang XS
    Chaos; 2016 May; 26(5):053104. PubMed ID: 27249944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Existence of homoclinic orbits and heteroclinic cycle in a class of three-dimensional piecewise linear systems with three switching manifolds.
    Zhu B; Wei Z; Escalante-González RJ; Kuznetsov NV
    Chaos; 2020 Dec; 30(12):123143. PubMed ID: 33380050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of piecewise affine systems with application to chaos stabilization.
    Li C; Chen G; Liao X
    Chaos; 2007 Jun; 17(2):023123. PubMed ID: 17614677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derivation of a continuous time dynamic planar system with two unstable foci from a three-dimensional chaotic piecewise linear system.
    Campos E
    Chaos; 2020 May; 30(5):053114. PubMed ID: 32491894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Lorenz-type attractor in a piecewise-smooth system: Rigorous results.
    Belykh VN; Barabash NV; Belykh IV
    Chaos; 2019 Oct; 29(10):103108. PubMed ID: 31675821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piecewise affine models of chaotic attractors: the Rossler and Lorenz systems.
    Amaral GF; Letellier C; Aguirre LA
    Chaos; 2006 Mar; 16(1):013115. PubMed ID: 16599746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hidden complexity of a double-scroll attractor: Analytic proofs from a piecewise-smooth system.
    Belykh VN; Barabash NV; Belykh I
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Links between topology of the transition graph and limit cycles in a two-dimensional piecewise affine biological model.
    Abou-Jaoudé W; Chaves M; Gouzé JL
    J Math Biol; 2014 Dec; 69(6-7):1461-95. PubMed ID: 24253252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal behavior in the parametric evolution of chaotic saddles.
    Lai YC; Zyczkowski K; Grebogi C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5261-5. PubMed ID: 11969484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On heteroclinic cycles of competitive maps via carrying simplices.
    Jiang J; Niu L; Wang Y
    J Math Biol; 2016 Mar; 72(4):939-972. PubMed ID: 26245247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasiperiodic, periodic, and slowing-down states of coupled heteroclinic cycles.
    Li D; Cross MC; Zhou C; Zheng Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016215. PubMed ID: 22400651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust chaos in 3-D piecewise linear maps.
    Patra M; Banerjee S
    Chaos; 2018 Dec; 28(12):123101. PubMed ID: 30599530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heteroclinic cycles and chaos in a system of four identical phase oscillators with global biharmonic coupling.
    Arefev AM; Grines EA; Osipov GV
    Chaos; 2023 Aug; 33(8):. PubMed ID: 37535029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxation oscillations of a piecewise-smooth slow-fast Bazykin's model with Holling type Ⅰ functional response.
    Wu X; Lu S; Xie F
    Math Biosci Eng; 2023 Sep; 20(10):17608-17624. PubMed ID: 38052528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Class of Quadratic Polynomial Chaotic Maps and Their Fixed Points Analysis.
    Wang C; Ding Q
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rank one chaos in a class of planar systems with heteroclinic cycle.
    Chen F; Han M
    Chaos; 2009 Dec; 19(4):043122. PubMed ID: 20059218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.