These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3685939)

  • 41. Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China.
    Chen D; Christensen TH
    Waste Manag Res; 2010 Jun; 28(6):508-19. PubMed ID: 20375128
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Refuse incinerator particulate emissions and combustion residues for New York City during the 20th century.
    Walsh DC; Chillrud SN; Simpson HJ; Bopp RF
    Environ Sci Technol; 2001 Jun; 35(12):2441-7. PubMed ID: 11432546
    [TBL] [Abstract][Full Text] [Related]  

  • 43. General approach to the biological analysis of complex mixtures.
    Thilly WG; Longwell J; Andon BM
    Environ Health Perspect; 1983 Feb; 48():129-36. PubMed ID: 6337832
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator.
    Zhong Z; Jin B; Huang Y; Zhou H; Lan J
    Waste Manag; 2006; 26(6):580-6. PubMed ID: 16054809
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon monoxide formation and emissions during waste incineration in a grate-circulating fluidized bed incinerator.
    Yanguo Zhang ; Qinghai Li ; Aihong Meng ; Changhe Chen
    Waste Manag Res; 2011 Mar; 29(3):294-308. PubMed ID: 20421246
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mutagenicity of particulates from the laboratory combustion of plastics.
    Lee H; Wang L; Shih JF
    Mutat Res; 1995 Mar; 346(3):135-44. PubMed ID: 7700277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Emission and distribution of PCDD/Fs, chlorobenzenes, chlorophenols, and PAHs from stack gas of a fluidized bed and a stoker waste incinerator in China.
    Wang T; Chen T; Lin X; Zhan M; Li X
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5607-5618. PubMed ID: 28035608
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 1: Fate of elements and dioxins.
    Bergfeldt B; Jay K; Seifert H; Vehlow J; Christensen TH; Baun DL; Mogensen EP
    Waste Manag Res; 2004 Feb; 22(1):49-57. PubMed ID: 15113114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genotoxic activity of organic chemicals in drinking water.
    Meier JR
    Mutat Res; 1988 Nov; 196(3):211-45. PubMed ID: 3059175
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The presence and leachability of antimony in different wastes and waste handling facilities in Norway.
    Okkenhaug G; Almås ÅR; Morin N; Hale SE; Arp HP
    Environ Sci Process Impacts; 2015 Nov; 17(11):1880-91. PubMed ID: 26449571
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Measurements in the raw gas of a full scale municipal waste incinerator using a wavelength resolved REMPI mass spectrometer.
    Nomayo M; Thanner R; Pokorny H; Grotheer HH; Stützle R
    Chemosphere; 2001; 43(4-7):461-7. PubMed ID: 11372827
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of chlorinated compounds in the spent chlorination liquor from differently treated sulphite pulps with special emphasis on mutagenic compounds.
    Carlberg GE; Drangsholt H; Gjøs N
    Sci Total Environ; 1986 Feb; 48(3):157-67. PubMed ID: 3961477
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genotoxicity and mutagenicity of suspended particulate matter of river water and waste water samples.
    Reifferscheid G; Oepen Bv
    ScientificWorldJournal; 2002 Apr; 2():1036-9. PubMed ID: 12805960
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutagenicity of adsorbates to a copper-phthalocyanine derivative recovered from municipal river water.
    Sayato Y; Nakamuro K; Ueno H; Goto R
    Mutat Res; 1990 Dec; 242(4):313-7. PubMed ID: 2255325
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dioxin-like PCBs released from waste incineration and their deposition flux.
    Akai S; Hayakawa K; Takatsuki H; Kawakami I
    Environ Sci Technol; 2001 Sep; 35(18):3601-7. PubMed ID: 11783634
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monitoring of volatile and non-volatile urban air genotoxins using bacteria, human cells and plants.
    Ceretti E; Zani C; Zerbini I; Viola G; Moretti M; Villarini M; Dominici L; Monarca S; Feretti D
    Chemosphere; 2015 Feb; 120():221-9. PubMed ID: 25084136
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Salmonella mutagenicity of industrial, surface and ground water samples of Aligarh region of India.
    Siddiqui AH; Ahmad M
    Mutat Res; 2003 Nov; 541(1-2):21-9. PubMed ID: 14568291
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Concentration and congener patterns of polychlorinated biphenyls in industrial and municipal waste incinerator flue gas, Korea.
    Shin SK; Kim KS; You JC; Song BJ; Kim JG
    J Hazard Mater; 2006 May; 133(1-3):53-9. PubMed ID: 16325998
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimation of the contribution of a municipal waste incinerator to the overall emission and human intake of PCBs in Wilrijk, Flanders.
    Van Gerven T; Geysen D; Vandecasteele C
    Chemosphere; 2004 Mar; 54(9):1303-8. PubMed ID: 14659423
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genotoxic and mutagenic potential of agricultural soil irrigated with tannery effluents at Jajmau (Kanpur), India.
    Alam MZ; Ahmad S; Malik A
    Arch Environ Contam Toxicol; 2009 Oct; 57(3):463-76. PubMed ID: 19153791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.