These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 36859730)
1. Radiomics approach with deep learning for predicting T4 obstructive colorectal cancer using CT image. Pan L; He T; Huang Z; Chen S; Zhang J; Zheng S; Chen X Abdom Radiol (NY); 2023 Apr; 48(4):1246-1259. PubMed ID: 36859730 [TBL] [Abstract][Full Text] [Related]
2. An integrated model combined intra- and peritumoral regions for predicting chemoradiation response of non small cell lung cancers based on radiomics and deep learning. Ma Y; Li Q Cancer Radiother; 2023 Dec; 27(8):705-711. PubMed ID: 37932182 [TBL] [Abstract][Full Text] [Related]
3. Development and Validation of a Computed Tomography-Based Model for Noninvasive Prediction of the T Stage in Gastric Cancer: Multicenter Retrospective Study. Tao J; Liu D; Hu FB; Zhang X; Yin H; Zhang H; Zhang K; Huang Z; Yang K J Med Internet Res; 2024 Oct; 26():e56851. PubMed ID: 39382960 [TBL] [Abstract][Full Text] [Related]
4. Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model. Ma X; Xia L; Chen J; Wan W; Zhou W Eur Radiol; 2023 Mar; 33(3):1949-1962. PubMed ID: 36169691 [TBL] [Abstract][Full Text] [Related]
5. Exploring the predictive value of additional peritumoral regions based on deep learning and radiomics: A multicenter study. Wu X; Dong D; Zhang L; Fang M; Zhu Y; He B; Ye Z; Zhang M; Zhang S; Tian J Med Phys; 2021 May; 48(5):2374-2385. PubMed ID: 33580497 [TBL] [Abstract][Full Text] [Related]
6. Special issue "The advance of solid tumor research in China": Prognosis prediction for stage II colorectal cancer by fusing computed tomography radiomics and deep-learning features of primary lesions and peripheral lymph nodes. Li M; Gong J; Bao Y; Huang D; Peng J; Tong T Int J Cancer; 2023 Jan; 152(1):31-41. PubMed ID: 35484979 [TBL] [Abstract][Full Text] [Related]
7. Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer. Li J; Dong D; Fang M; Wang R; Tian J; Li H; Gao J Eur Radiol; 2020 Apr; 30(4):2324-2333. PubMed ID: 31953668 [TBL] [Abstract][Full Text] [Related]
8. Noninvasive KRAS mutation estimation in colorectal cancer using a deep learning method based on CT imaging. He K; Liu X; Li M; Li X; Yang H; Zhang H BMC Med Imaging; 2020 Jun; 20(1):59. PubMed ID: 32487083 [TBL] [Abstract][Full Text] [Related]
9. Integrating Clinical Data and Radiomics and Deep Learning Features for End-to-End Delayed Cerebral Ischemia Prediction on Noncontrast CT. Ban QQ; Zhang HT; Wang W; Du YF; Zhao Y; Peng AJ; Qu H AJNR Am J Neuroradiol; 2024 Sep; 45(9):1260-1268. PubMed ID: 39025637 [TBL] [Abstract][Full Text] [Related]
10. Role of intratumoral and peritumoral CT radiomics for the prediction of EGFR gene mutation in primary lung cancer. Yamazaki M; Yagi T; Tominaga M; Minato K; Ishikawa H Br J Radiol; 2022 Dec; 95(1140):20220374. PubMed ID: 36115683 [TBL] [Abstract][Full Text] [Related]
11. Comparison of deep-learning and radiomics-based machine-learning methods for the identification of chronic obstructive pulmonary disease on low-dose computed tomography images. Guan Y; Zhang D; Zhou X; Xia Y; Lu Y; Zheng X; He C; Liu S; Fan L Quant Imaging Med Surg; 2024 Mar; 14(3):2485-2498. PubMed ID: 38545077 [TBL] [Abstract][Full Text] [Related]
12. Computed Tomography-Based Radiomic Features Could Potentially Predict Microsatellite Instability Status in Stage II Colorectal Cancer: A Preliminary Study. Fan S; Li X; Cui X; Zheng L; Ren X; Ma W; Ye Z Acad Radiol; 2019 Dec; 26(12):1633-1640. PubMed ID: 30929999 [TBL] [Abstract][Full Text] [Related]
13. Optimizing the radiomics-machine-learning model based on non-contrast enhanced CT for the simplified risk categorization of thymic epithelial tumors: A large cohort retrospective study. Feng XL; Wang SZ; Chen HH; Huang YX; Xin YK; Zhang T; Cheng DL; Mao L; Li XL; Liu CX; Hu YC; Wang W; Cui GB; Nan HY Lung Cancer; 2022 Apr; 166():150-160. PubMed ID: 35287067 [TBL] [Abstract][Full Text] [Related]
14. A multidomain fusion model of radiomics and deep learning to discriminate between PDAC and AIP based on Wei W; Jia G; Wu Z; Wang T; Wang H; Wei K; Cheng C; Liu Z; Zuo C Jpn J Radiol; 2023 Apr; 41(4):417-427. PubMed ID: 36409398 [TBL] [Abstract][Full Text] [Related]
15. Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features. Hu X; Gong J; Zhou W; Li H; Wang S; Wei M; Peng W; Gu Y Phys Med Biol; 2021 Mar; 66(6):065015. PubMed ID: 33596552 [TBL] [Abstract][Full Text] [Related]
16. Deep learning-based radiomics predicts response to chemotherapy in colorectal liver metastases. Wei J; Cheng J; Gu D; Chai F; Hong N; Wang Y; Tian J Med Phys; 2021 Jan; 48(1):513-522. PubMed ID: 33119899 [TBL] [Abstract][Full Text] [Related]
17. Computed tomography-based radiomics nomogram for the preoperative prediction of perineural invasion in colorectal cancer: a multicentre study. Chen Q; Cui Y; Xue T; Peng H; Li M; Zhu X; Duan S; Gu H; Feng F Abdom Radiol (NY); 2022 Sep; 47(9):3251-3263. PubMed ID: 35960308 [TBL] [Abstract][Full Text] [Related]
18. Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning. Tharmaseelan H; Vellala AK; Hertel A; Tollens F; Rotkopf LT; Rink J; Woźnicki P; Ayx I; Bartling S; Nörenberg D; Schoenberg SO; Froelich MF Cancer Imaging; 2023 Oct; 23(1):95. PubMed ID: 37798797 [TBL] [Abstract][Full Text] [Related]
19. Personalized prediction of immunotherapy response in lung cancer patients using advanced radiomics and deep learning. Liao CY; Chen YM; Wu YT; Chao HS; Chiu HY; Wang TW; Chen JR; Shiao TH; Lu CF Cancer Imaging; 2024 Sep; 24(1):129. PubMed ID: 39350284 [TBL] [Abstract][Full Text] [Related]
20. Deep Learning Features Improve the Performance of a Radiomics Signature for Predicting KRAS Status in Patients with Colorectal Cancer. Wu X; Li Y; Chen X; Huang Y; He L; Zhao K; Huang X; Zhang W; Huang Y; Li Y; Dong M; Huang J; Xia T; Liang C; Liu Z Acad Radiol; 2020 Nov; 27(11):e254-e262. PubMed ID: 31982342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]