These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 36859892)
1. Photoelectric hybrid neural network based on ZnO nematic liquid crystal microlens array for hyperspectral imaging. Li H; Li T; Chen S; Wu Y Opt Express; 2023 Feb; 31(5):7643-7658. PubMed ID: 36859892 [TBL] [Abstract][Full Text] [Related]
2. Learned liquid crystal microlens array for joint optimized deep optical architecture in identifying metameric materials. Li S; Li H; Li T; Su C; Wu Y Opt Lett; 2024 Oct; 49(20):5866-5869. PubMed ID: 39404558 [TBL] [Abstract][Full Text] [Related]
3. Resolution Improvement of Light Field Imaging via a Nematic Liquid Crystal Microlens with Added Multi-Walled Carbon Nanotubes. Li H; Yu Y; Peng J; Wu Y; Zhang Y Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32998348 [TBL] [Abstract][Full Text] [Related]
4. Research on spectral reconstruction algorithm for snapshot microlens array micro-hyperspectral imaging system. Yu C; Yang J; Wang M; Sun C; Song N; Cui J; Feng S Opt Express; 2021 Aug; 29(17):26713-26723. PubMed ID: 34615100 [TBL] [Abstract][Full Text] [Related]
5. Hyperspectral Raman Imaging Using a Spatial Heterodyne Raman Spectrometer with a Microlens Array. Allen A; Waldron A; Ottaway JM; Chance Carter J; Michael Angel S Appl Spectrosc; 2020 Aug; 74(8):921-931. PubMed ID: 32031013 [TBL] [Abstract][Full Text] [Related]
6. Optically isotropic switchable microlens arrays based on liquid crystal. Lee YJ; Yu CJ; Lee JH; Baek JH; Kim Y; Kim JH Appl Opt; 2014 Jun; 53(17):3633-6. PubMed ID: 24921125 [TBL] [Abstract][Full Text] [Related]
7. Fast-switching laterally virtual-moving microlens array for enhancing spatial resolution in light-field imaging system without degradation of angular sampling resolution. Park MK; Park H; Joo KI; Lee TH; Kwon KC; Erdenebat MU; Lim YT; Kim N; Kim HR Sci Rep; 2019 Aug; 9(1):11297. PubMed ID: 31383912 [TBL] [Abstract][Full Text] [Related]
8. A 256 × 256 LiDAR Imaging System Based on a 200 mW SPAD-Based SoC with Microlens Array and Lightweight RGB-Guided Depth Completion Neural Network. Wang J; Li J; Wu Y; Yu H; Cui L; Sun M; Chiang PY Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571709 [TBL] [Abstract][Full Text] [Related]
9. Single-shot ultrafast burst imaging using an integral field spectroscope with a microlens array. Nemoto H; Suzuki T; Kannari F Opt Lett; 2020 Sep; 45(18):5004-5007. PubMed ID: 32932438 [TBL] [Abstract][Full Text] [Related]
10. Electrically tunable infrared filter based on the liquid crystal Fabry-Perot structure for spectral imaging detection. Zhang H; Muhammmad A; Luo J; Tong Q; Lei Y; Zhang X; Sang H; Xie C Appl Opt; 2014 Sep; 53(25):5632-9. PubMed ID: 25321356 [TBL] [Abstract][Full Text] [Related]
11. Polarizer-free liquid crystal display with double microlens array layers and polarization-controlling liquid crystal layer. Lee YJ; Yu CJ; Kim JH Opt Express; 2015 Oct; 23(21):27627-32. PubMed ID: 26480423 [TBL] [Abstract][Full Text] [Related]
12. Fast responsive 2D/3D switchable display using a liquid crystal microlens array. Tian LL; Chu F; Zhao WX; Li L; Wang QH Opt Lett; 2021 Dec; 46(23):5870-5873. PubMed ID: 34851911 [TBL] [Abstract][Full Text] [Related]
13. Injection Compression Molded Microlens Arrays for Hyperspectral Imaging. Roeder M; Drexler M; Rothermel T; Meissner T; Guenther T; Zimmermann A Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424288 [TBL] [Abstract][Full Text] [Related]
14. Microlens array snapshot hyperspectral microscopy system for the biomedical domain. Yu C; Yang J; Song N; Sun C; Wang M; Feng S Appl Opt; 2021 Mar; 60(7):1896-1902. PubMed ID: 33690279 [TBL] [Abstract][Full Text] [Related]
16. Double Ghost Convolution Attention Mechanism Network: A Framework for Hyperspectral Reconstruction of a Single RGB Image. Wang W; Wang J Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477959 [TBL] [Abstract][Full Text] [Related]
17. Ommatidia structure based on double layers of liquid crystal microlens array. Kang S; Qing T; Sang H; Zhang X; Xie C Appl Opt; 2013 Nov; 52(33):7912-8. PubMed ID: 24513741 [TBL] [Abstract][Full Text] [Related]
18. High-Accuracy Correction of a Microlens Array for Plenoptic Imaging Sensors. Li S; Yuan Y; Gao Z; Tan H Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31514430 [TBL] [Abstract][Full Text] [Related]
19. Dual convolutional neural network for aberration pre-correction and image quality enhancement in integral imaging display. Cao S; Ma H; Li C; Zhou R; Sun Y; Li J; Liu J Opt Express; 2023 Oct; 31(21):34609-34625. PubMed ID: 37859213 [TBL] [Abstract][Full Text] [Related]
20. Broadband point-spread function engineering via a freeform diffractive microlens array. Majumder A; Meem M; Stewart R; Menon R Opt Express; 2022 Jan; 30(2):1967-1975. PubMed ID: 35209347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]