These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36859896)

  • 1. Statistical perception of the chaotic fabrication error and the self-adaptive processing decision in ultra-precision optical polishing.
    Li H; Wan S; Niu Z; Guo H; Zhang L; Lu Q; Wei C; Shao J
    Opt Express; 2023 Feb; 31(5):7707-7724. PubMed ID: 36859896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-based systematic error extraction and compensation methods based on wavelet transform in ultra-precision optical polishing.
    Li H; Wan S; Jiang P; Yan S; Han Y; Wang L; Niu Z; Hu C; Jiang G; Cao Z; Zhang Y; Wei C; Shao J
    Opt Lett; 2024 Aug; 49(15):4366-4369. PubMed ID: 39090935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified dwell time optimization model and its applications in subaperture polishing.
    Dong Z; Cheng H; Tam HY
    Appl Opt; 2014 May; 53(15):3213-24. PubMed ID: 24922206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and analysis of the mid-spatial- frequency error characteristics and generation mechanism in sub-aperture optical polishing.
    Wan S; Wei C; Hong Z; Shao J
    Opt Express; 2020 Mar; 28(6):8959-8973. PubMed ID: 32225511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-precision fabrication of a nickel-phosphorus layer on aluminum substrate by SPDT and MRF.
    Bai Y; Zhang Z; Xue D; Zhang X
    Appl Opt; 2018 Dec; 57(34):F62-F67. PubMed ID: 30645271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Development of the Stress-Free Polishing System Based on the Positioning Error Analysis for the Deterministic Polishing of Jet Electrochemical Machining.
    Wang K; Wang H; Zhang Y; Shi H; Shi J
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process Chain for Ultra-Precision and High-Efficiency Manufacturing of Large-Aperture Silicon Carbide Aspheric Mirrors.
    Zhong B; Wu W; Wang J; Zhou L; Hou J; Ji B; Deng W; Wei Q; Wang C; Xu Q
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37420971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uniform Polishing Method of Spherical Lens Based on Material Removal Model of High-Speed Polishing Procedure.
    Zhang H; Wang P; Li Z; Shen Y; Zhang X
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33076347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restraint of the mid-spatial frequency error on optical surfaces by multi-jet polishing.
    Zhang Z; Cheung CF; Wang C; Ho LT; Guo J
    Opt Express; 2022 Dec; 30(26):46307-46323. PubMed ID: 36558588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurately predicting the tool influence function to achieve high-precision magnetorheological finishing using robots.
    Cheng R; Li L; Xue D; Li X; Bai Y; Luo X; Zhang X
    Opt Express; 2023 Oct; 31(21):34917-34936. PubMed ID: 37859236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Region-adaptive path planning for precision optical polishing with industrial robots.
    Wan S; Zhang X; Xu M; Wang W; Jiang X
    Opt Express; 2018 Sep; 26(18):23782-23795. PubMed ID: 30184874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mid-high-frequency error suppression of small optical aspheric molds.
    Zhang J; Wang H; Zhuo S; Kuang J; Wu Y; Zhang J; Zhu X; Ma S; Yao H
    Appl Opt; 2023 Apr; 62(11):2766-2775. PubMed ID: 37133117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid fabrication strategy for Ø1.5  m off-axis parabolic parts using computer-controlled optical surfacing.
    Hu H; Qi E; Luo X; Zhang X; Xue D
    Appl Opt; 2018 Dec; 57(34):F37-F43. PubMed ID: 30645273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces.
    He Z; Hai K; Li K; Yu J; Wu L; Zhang L; Su X; Cai L; Huang W; Hang W
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid lubricated polishing based on shear thickening.
    Yin L; Da Y; Hu H; Guan C
    Opt Express; 2023 Jan; 31(1):698-713. PubMed ID: 36607003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dwell-time algorithm for polishing large optics.
    Wang C; Yang W; Wang Z; Yang X; Hu C; Zhong B; Guo Y; Xu Q
    Appl Opt; 2014 Jul; 53(21):4752-60. PubMed ID: 25090214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A High Efficiency and Precision Smoothing Polishing Method for NiP Coating of Metal Mirror.
    Xu C; Peng X; Liu J; Hu H; Lai T; Yang Q; Xiong Y
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 35893169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Method of Restraining the Adverse Effects of Grinding Marks on Small Aperture Aspheric Mirrors.
    Bao J; Peng X; Hu H; Lai T
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and validation of polishing tool influence functions for manufacturing segments for an extremely large telescope.
    Li H; Walker D; Yu G; Zhang W
    Appl Opt; 2013 Aug; 52(23):5781-7. PubMed ID: 23938432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions.
    Kim DW; Kim SW; Burge JH
    Opt Express; 2009 Nov; 17(24):21850-66. PubMed ID: 19997430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.