These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36860083)

  • 1. Efficiency and mechanism of micro- and nano-plastic removal with polymeric Al-Fe bimetallic coagulants: Role of Fe addition.
    Wang Q; Tian C; Shi B; Wang D; Feng C
    J Hazard Mater; 2023 Apr; 448():130978. PubMed ID: 36860083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of electrostatic neutralization of Keggin Fe
    Tian C; Akhtar I; Wang Q; Li Z; Shi B; Feng C; Wang D
    J Hazard Mater; 2023 Feb; 443(Pt A):130175. PubMed ID: 36279649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coagulative removal of microplastics from aqueous matrices: Recent progresses and future perspectives.
    Girish N; Parashar N; Hait S
    Sci Total Environ; 2023 Nov; 899():165723. PubMed ID: 37482362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient removal of nano- and micro- sized plastics using a starch-based coagulant in conjunction with polysilicic acid.
    Hu P; Su K; Sun Y; Li P; Cai J; Yang H
    Sci Total Environ; 2022 Dec; 850():157829. PubMed ID: 35932863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal efficiency of micro- and nanoplastics (180 nm-125 μm) during drinking water treatment.
    Zhang Y; Diehl A; Lewandowski A; Gopalakrishnan K; Baker T
    Sci Total Environ; 2020 Jun; 720():137383. PubMed ID: 32325555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal behaviors and mechanism of polystyrene microplastics by coagulation/ultrafiltration process: Co-effects of humic acid.
    Wang W; Yang M; Ma H; Liu Z; Gai L; Zheng Z; Ma H
    Sci Total Environ; 2023 Jul; 881():163408. PubMed ID: 37061054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Efficiency of Aluminum Coagulants Used in Dissolved Air Flotation (DAF).
    Miranda R; Latour I; Blanco A
    Front Chem; 2020; 8():27. PubMed ID: 32117867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suitability of inorganic coagulants for algae-laden water treatment: Trade-off between algae removal and cell viability, aggregate properties and coagulant residue.
    Wang L; Al-Dhabi NA; Huang X; Luan Z; Tang W; Xu Z; Xu W
    J Hazard Mater; 2024 Jun; 471():134314. PubMed ID: 38640668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving nanoplastic removal by coagulation: Impact mechanism of particle size and water chemical conditions.
    Zhang Y; Wang X; Li Y; Wang H; Shi Y; Li Y; Zhang Y
    J Hazard Mater; 2022 Mar; 425():127962. PubMed ID: 34894513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation.
    Lapointe M; Farner JM; Hernandez LM; Tufenkji N
    Environ Sci Technol; 2020 Jul; 54(14):8719-8727. PubMed ID: 32543204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The removal of microplastics from water by coagulation: A comprehensive review.
    Tang W; Li H; Fei L; Wei B; Zhou T; Zhang H
    Sci Total Environ; 2022 Dec; 851(Pt 1):158224. PubMed ID: 36007643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and application of poly-ferric-titanium-silicate-sulfate in disperse and reactive dye wastewaters treatment.
    Huang X; Wan Y; Shi B; Shi J; Chen H; Liang H
    Chemosphere; 2020 Jun; 249():126129. PubMed ID: 32062210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment.
    Ma B; Xue W; Ding Y; Hu C; Liu H; Qu J
    J Environ Sci (China); 2019 Apr; 78():267-275. PubMed ID: 30665645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations in NOM during floc aging: Effect of typical Al-based coagulants and different particle sizes.
    Yu J; Xu H; Wang D; Sun H; Jiao R; Liu Y; Jin Z; Zhang S
    Water Res; 2022 Jun; 218():118486. PubMed ID: 35504159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of coagulation and sedimentation conditions by turbidity measurement for nano- and microplastic removal.
    Bayarkhuu B; Byun J
    Chemosphere; 2022 Nov; 306():135572. PubMed ID: 35792216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes.
    Pramanik BK; Pramanik SK; Monira S
    Chemosphere; 2021 Nov; 282():131053. PubMed ID: 34098311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coagulation behavior and floc characteristics of a novel composite poly-ferric aluminum chloride-polydimethyl diallylammonium chloride coagulant with different OH/(Fe
    Sun C; Qiu J; Zhang Z; Marhaba TF; Zhang Y
    Water Sci Technol; 2016 Oct; 74(7):1636-1643. PubMed ID: 27763344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfate ion in raw water affects performance of high-basicity PACl coagulants produced by Al(OH)
    Chen Y; Nakazawa Y; Matsui Y; Shirasaki N; Matsushita T
    Water Res; 2020 Sep; 183():116093. PubMed ID: 32645580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts.
    Zhao YX; Gao BY; Shon HK; Cao BC; Kim JH
    J Hazard Mater; 2011 Jan; 185(2-3):1536-42. PubMed ID: 21075521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic-Level Structural Differences between Fe(III) Coprecipitates Generated by the Addition of Fe(III) Coagulants and by the Oxidation of Fe(II) Coagulants Determine Their Coagulation Behavior in Phosphate and DOM Removal.
    Yang B; Graham N; Liu P; Liu M; Gregory J; Yu W
    Environ Sci Technol; 2023 Aug; 57(33):12489-12500. PubMed ID: 37551789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.