BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36860178)

  • 1. Rewiring the respiratory pathway of Lactococcus lactis to enhance extracellular electron transfer.
    Gu L; Xiao X; Zhao G; Kempen P; Zhao S; Liu J; Lee SY; Solem C
    Microb Biotechnol; 2023 Jun; 16(6):1277-1292. PubMed ID: 36860178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scrutinizing a
    Gu L; Zhao S; Tadesse BT; Zhao G; Solem C
    Appl Environ Microbiol; 2024 May; 90(5):e0041424. PubMed ID: 38563750
    [No Abstract]   [Full Text] [Related]  

  • 3. Superior anodic electro-fermentation by enhancing capacity for extracellular electron transfer.
    Gu L; Xiao X; Yup Lee S; Lai B; Solem C
    Bioresour Technol; 2023 Dec; 389():129813. PubMed ID: 37776913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of a membrane potential by Lactococcus lactis through aerobic electron transport.
    Brooijmans RJ; Poolman B; Schuurman-Wolters GK; de Vos WM; Hugenholtz J
    J Bacteriol; 2007 Jul; 189(14):5203-9. PubMed ID: 17496098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing Adaptive Evolution to Achieve Superior Mannitol Production by
    Xiao H; Wang Q; Bang-Berthelsen CH; Jensen PR; Solem C
    J Agric Food Chem; 2020 Apr; 68(17):4912-4921. PubMed ID: 32233405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task Distribution between Acetate and Acetoin Pathways To Prolong Growth in Lactococcus lactis under Respiration Conditions.
    Cesselin B; Garrigues C; Pedersen MB; Roussel C; Gruss A; Gaudu P
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030222
    [No Abstract]   [Full Text] [Related]  

  • 7. Long-chain vitamin K2 production in Lactococcus lactis is influenced by temperature, carbon source, aeration and mode of energy metabolism.
    Liu Y; van Bennekom EO; Zhang Y; Abee T; Smid EJ
    Microb Cell Fact; 2019 Aug; 18(1):129. PubMed ID: 31387603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Lactococcus lactis as a multi-stress tolerant biosynthetic chassis by deleting the prophage-related fragment.
    Qiao W; Qiao Y; Liu F; Zhang Y; Li R; Wu Z; Xu H; Saris PEJ; Qiao M
    Microb Cell Fact; 2020 Dec; 19(1):225. PubMed ID: 33298073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1.
    Li F; Li Y; Sun L; Chen X; An X; Yin C; Cao Y; Wu H; Song H
    ACS Synth Biol; 2018 Mar; 7(3):885-895. PubMed ID: 29429342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival.
    Duwat P; Sourice S; Cesselin B; Lamberet G; Vido K; Gaudu P; Le Loir Y; Violet F; Loubière P; Gruss A
    J Bacteriol; 2001 Aug; 183(15):4509-16. PubMed ID: 11443085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Carbohydrate metabolism and lactic acid biosynthesis of Lactococcus lactis subsp. lactis KLDS4.0325].
    Yang X; Wang Y; Zhou Y; Gao X; Bailiang L; Huo G
    Wei Sheng Wu Xue Bao; 2014 Oct; 54(10):1146-54. PubMed ID: 25803891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive Laboratory Evolution as a Means To Generate Lactococcus lactis Strains with Improved Thermotolerance and Ability To Autolyze.
    Dorau R; Chen J; Liu J; Ruhdal Jensen P; Solem C
    Appl Environ Microbiol; 2021 Oct; 87(21):e0103521. PubMed ID: 34406823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system.
    Vido K; Le Bars D; Mistou MY; Anglade P; Gruss A; Gaudu P
    J Bacteriol; 2004 Mar; 186(6):1648-57. PubMed ID: 14996795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systemic understanding of Lactococcus lactis response to acid stress using transcriptomics approaches.
    Zhu Z; Yang P; Wu Z; Zhang J; Du G
    J Ind Microbiol Biotechnol; 2019 Nov; 46(11):1621-1629. PubMed ID: 31414323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance to bacteriocin Lcn972 improves oxygen tolerance of Lactococcus lactis IPLA947 without compromising its performance as a dairy starter.
    López-González MJ; Campelo AB; Picon A; Rodríguez A; Martínez B
    BMC Microbiol; 2018 Jul; 18(1):76. PubMed ID: 30029618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose metabolism of lactic acid bacteria changed by quinone-mediated extracellular electron transfer.
    Yamazaki S; Kaneko T; Taketomo N; Kano K; Ikeda T
    Biosci Biotechnol Biochem; 2002 Oct; 66(10):2100-6. PubMed ID: 12450120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation.
    Cretenet M; Le Gall G; Wegmann U; Even S; Shearman C; Stentz R; Jeanson S
    BMC Genomics; 2014 Dec; 15(1):1054. PubMed ID: 25467604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.
    Masuda M; Freguia S; Wang YF; Tsujimura S; Kano K
    Bioelectrochemistry; 2010 Jun; 78(2):173-5. PubMed ID: 19717350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis.
    Rezaïki L; Cesselin B; Yamamoto Y; Vido K; van West E; Gaudu P; Gruss A
    Mol Microbiol; 2004 Sep; 53(5):1331-42. PubMed ID: 15387813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism.
    Tejedor-Sanz S; Stevens ET; Li S; Finnegan P; Nelson J; Knoesen A; Light SH; Ajo-Franklin CM; Marco ML
    Elife; 2022 Feb; 11():. PubMed ID: 35147079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.