These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36860410)

  • 1. Functional magnetic resonance imaging data for the neural dynamics underlying the acquisition of distinct auditory categories.
    Gan Z; Wang S; Feng G
    Data Brief; 2023 Apr; 47():108972. PubMed ID: 36860410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural dynamics underlying the acquisition of distinct auditory category structures.
    Feng G; Gan Z; Yi HG; Ell SW; Roark CL; Wang S; Wong PCM; Chandrasekaran B
    Neuroimage; 2021 Dec; 244():118565. PubMed ID: 34543762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging native-similar neural representations underlie non-native speech category learning success.
    Feng G; Li Y; Hsu SM; Wong PCM; Chou TL; Chandrasekaran B
    Neurobiol Lang (Camb); 2021; 2(2):280-307. PubMed ID: 34368775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning of new sound categories shapes neural response patterns in human auditory cortex.
    Ley A; Vroomen J; Hausfeld L; Valente G; De Weerd P; Formisano E
    J Neurosci; 2012 Sep; 32(38):13273-80. PubMed ID: 22993443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of the Human Auditory Corticostriatal Network in Speech Learning.
    Feng G; Yi HG; Chandrasekaran B
    Cereb Cortex; 2019 Sep; 29(10):4077-4089. PubMed ID: 30535138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training Humans to Categorize Monkey Calls: Auditory Feature- and Category-Selective Neural Tuning Changes.
    Jiang X; Chevillet MA; Rauschecker JP; Riesenhuber M
    Neuron; 2018 Apr; 98(2):405-416.e4. PubMed ID: 29673483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Category-Biased Neural Representations Form Spontaneously during Learning That Emphasizes Memory for Specific Instances.
    Ashby SR; Zeithamova D
    J Neurosci; 2022 Feb; 42(5):865-876. PubMed ID: 34937702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task and distribution sampling affect auditory category learning.
    Roark CL; Holt LL
    Atten Percept Psychophys; 2018 Oct; 80(7):1804-1822. PubMed ID: 29968085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the striatum in incidental learning of sound categories.
    Lim SJ; Fiez JA; Holt LL
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4671-4680. PubMed ID: 30782817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural changes associated with nonspeech auditory category learning parallel those of speech category acquisition.
    Liu R; Holt LL
    J Cogn Neurosci; 2011 Mar; 23(3):683-98. PubMed ID: 19929331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulus modality influences the acquisition and use of the rule-based strategy and the similarity-based strategy in category learning.
    Wu J; Fu Q; Rose M
    Neurobiol Learn Mem; 2020 Feb; 168():107152. PubMed ID: 31881353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory and visual category learning in musicians and nonmusicians.
    Roark CL; Smayda KE; Chandrasekaran B
    J Exp Psychol Gen; 2022 Mar; 151(3):739-748. PubMed ID: 34338537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The functional relations among motor-based prediction, sensory goals and feedback in learning non-native speech sounds: Evidence from adult Mandarin Chinese speakers with an auditory feedback masking paradigm.
    Liu X; Tian X
    Sci Rep; 2018 Aug; 8(1):11910. PubMed ID: 30093692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural correlates of rule-based and information-integration visual category learning.
    Nomura EM; Maddox WT; Filoteo JV; Ing AD; Gitelman DR; Parrish TB; Mesulam MM; Reber PJ
    Cereb Cortex; 2007 Jan; 17(1):37-43. PubMed ID: 16436685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential category learning processes: The neural basis of comparison-based learning and induction.
    Hammer R; Brechmann A; Ohl F; Weinshall D; Hochstein S
    Neuroimage; 2010 Aug; 52(2):699-709. PubMed ID: 20363336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of age and executive function in auditory category learning.
    Reetzke R; Maddox WT; Chandrasekaran B
    J Exp Child Psychol; 2016 Feb; 142():48-65. PubMed ID: 26491987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility.
    Qiao L; Zhang L; Chen A; Egner T
    J Neurosci; 2017 Nov; 37(45):11037-11050. PubMed ID: 28972126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representation of sound categories in auditory cortical maps.
    Guenther FH; Nieto-Castanon A; Ghosh SS; Tourville JA
    J Speech Lang Hear Res; 2004 Feb; 47(1):46-57. PubMed ID: 15072527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced Learning of Sound Categories in Dyslexia Is Associated with Reduced Regularity-Induced Auditory Cortex Adaptation.
    Gertsovski A; Ahissar M
    J Neurosci; 2022 Feb; 42(7):1328-1342. PubMed ID: 34969869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related declines in neural distinctiveness correlate across brain areas and result from both decreased reliability and increased confusability.
    Simmonite M; Polk TA
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2022 May; 29(3):483-499. PubMed ID: 34757860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.