These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36860520)

  • 1. Cardiorespiratory optimal point as a submaximal evaluation tool in endurance athletes: An exploratory study.
    Oyarzo-Aravena A; Arce-Alvarez A; Salazar-Ardiles C; Ramirez-Campillo R; Alvarez C; Toledo C; Izquierdo M; Andrade DC
    Front Physiol; 2023; 14():1087829. PubMed ID: 36860520
    [No Abstract]   [Full Text] [Related]  

  • 2. Combination of novel and traditional cardiorespiratory indices for the evaluation of adolescent volleyball players.
    Charitonidis K; Koutlianos N; Anagnostaras K; Anifanti M; Kouidi E; Deligiannis A
    Hippokratia; 2019; 23(2):70-74. PubMed ID: 32265587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiorespiratory optimal point: a submaximal variable of the cardiopulmonary exercise testing.
    Ramos PS; Ricardo DR; Araújo CG
    Arq Bras Cardiol; 2012 Nov; 99(5):988-96. PubMed ID: 23033112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiorespiratory optimal point during exercise testing as a predictor of all-cause mortality.
    Ramos PS; Araújo CG
    Rev Port Cardiol; 2017 Apr; 36(4):261-269. PubMed ID: 28318852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub Maximal Ergospirometry Parameters in Untrained Non-Frail Octogenarian Subjects.
    Cofre-Bolados C; Ferrari G; Valdivia-Moral P; Vidal-Díaz F; Ramírez-Vélez R; Izquierdo-Redin M
    Medicina (Kaunas); 2022 Mar; 58(3):. PubMed ID: 35334553
    [No Abstract]   [Full Text] [Related]  

  • 6. Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise.
    Baba R; Nagashima M; Goto M; Nagano Y; Yokota M; Tauchi N; Nishibata K
    J Am Coll Cardiol; 1996 Nov; 28(6):1567-72. PubMed ID: 8917273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VO
    Wiecha S; Kasiak PS; Szwed P; Kowalski T; Cieśliński I; Postuła M; Klusiewicz A
    Elife; 2023 May; 12():. PubMed ID: 37162318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen intake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relationship between oxygen consumption and minute ventilation during incremental exercise.
    Baba R; Nagashima M; Goto M; Nagano Y; Yokota M; Tauchi N; Nishibata K
    Nagoya J Med Sci; 1996 Mar; 59(1-2):55-62. PubMed ID: 8725489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in the ventilatory thresholds in treadmill according to training status in 971 males and 301 females: a cross-sectional study.
    Benítez-Muñoz JA; Benito PJ; Guisado-Cuadrado I; Cupeiro R; Peinado AB
    Eur J Appl Physiol; 2024 Sep; ():. PubMed ID: 39316126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an "optimal" distribution?
    Seiler KS; Kjerland GØ
    Scand J Med Sci Sports; 2006 Feb; 16(1):49-56. PubMed ID: 16430681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiorespiratory optimal point during exercise testing and sudden cardiac death: A prospective cohort study.
    Laukkanen JA; Savonen K; Hupin D; Araújo CGS; Kunutsor SK
    Prog Cardiovasc Dis; 2021; 68():12-18. PubMed ID: 34597617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility of ventilation of thresholds in trained cyclists during ramp cycle exercise.
    Weston SB; Gabbett TJ
    J Sci Med Sport; 2001 Sep; 4(3):357-66. PubMed ID: 11702922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endurance training of older men: responses to submaximal exercise.
    Poulin MJ; Paterson DH; Govindasamy D; Cunningham DA
    J Appl Physiol (1985); 1992 Aug; 73(2):452-7. PubMed ID: 1399965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of the physiological factors determining endurance performance ability.
    Coyle EF
    Exerc Sport Sci Rev; 1995; 23():25-63. PubMed ID: 7556353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leg compressions improve ventilatory efficiency while reducing peak and post exercise blood lactate, but does not improve perceived exertion, exercise economy or aerobic exercise capacity in endurance-trained runners.
    Rivas E; Smith JD; Sherman NW
    Respir Physiol Neurobiol; 2017 Mar; 237():1-6. PubMed ID: 28013058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Submaximal endurance performance related to the ventilation thresholds.
    McLellan TM; Skinner JS
    Can J Appl Sport Sci; 1985 Jun; 10(2):81-7. PubMed ID: 4017156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomic recovery after exercise in trained athletes: intensity and duration effects.
    Seiler S; Haugen O; Kuffel E
    Med Sci Sports Exerc; 2007 Aug; 39(8):1366-73. PubMed ID: 17762370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ventilatory threshold measurement to evaluate maximal endurance performance.
    Reybrouck T; Ghesquiere J; Weymans M; Amery A
    Int J Sports Med; 1986 Feb; 7(1):26-9. PubMed ID: 3082780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen consumption and heart rate responses to isolated ballet exercise sets.
    Rodrigues-Krause J; Dos Santos Cunha G; Alberton CL; Follmer B; Krause M; Reischak-Oliveira A
    J Dance Med Sci; 2014; 18(3):99-105. PubMed ID: 25474174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiorespiratory optimal point: a submaximal exercise variable to assess panic disorder patients.
    Ramos PS; Sardinha A; Nardi AE; de Araújo CG
    PLoS One; 2014; 9(8):e104932. PubMed ID: 25157496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.