These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36860544)

  • 41. Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors.
    Przybylski M; Kapelski D; Ślusarek B; Wiak S
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27110783
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Magnetic Properties Improvement of Die-upset Nd-Fe-B Magnets by Dy-Cu Press Injection and Subsequent Heat Treatment.
    Wang Z; Ju J; Wang J; Yin W; Chen R; Li M; Jin C; Tang X; Lee D; Yan A
    Sci Rep; 2016 Dec; 6():38335. PubMed ID: 27922060
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nd(2)Fe(14)B/FeCo anisotropic nanocomposite films with a large maximum energy product.
    Cui WB; Takahashi YK; Hono K
    Adv Mater; 2012 Dec; 24(48):6530-5. PubMed ID: 23108704
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Effects of the Addition of Dy, Nb, and Ga on Microstructure and Magnetic Properties of Nd2Fe14B/α-Fe Nanocomposite Permanent Magnetic Alloys.
    Ren K; Tan X; Li H; Xu H; Han K
    Microsc Microanal; 2017 Apr; 23(2):425-430. PubMed ID: 28318460
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of Additional Micro-Sized Particles of Dy-Nd-Cu-Al on Magnetic Properties of Sintered Nd-Fe-B Magnets.
    Thanh PT; Oanh DTK; Yen NH; Dan NH
    J Nanosci Nanotechnol; 2021 Apr; 21(4):2558-2562. PubMed ID: 33500075
    [TBL] [Abstract][Full Text] [Related]  

  • 46. First-principles determination of intergranular atomic arrangements and magnetic properties in rare-earth permanent magnets.
    Gohda Y
    Sci Technol Adv Mater; 2021 Feb; 22(1):113-123. PubMed ID: 33628121
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Correlative multi-scale characterization of a fine grained Nd-Fe-B sintered magnet.
    Sasaki TT; Ohkubo T; Hono K; Une Y; Sagawa M
    Ultramicroscopy; 2013 Sep; 132():222-6. PubMed ID: 23477852
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering.
    Castle E; Sheridan R; Zhou W; Grasso S; Walton A; Reece MJ
    Sci Rep; 2017 Sep; 7(1):11134. PubMed ID: 28894237
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microstructure analysis of Nd-Fe-B sintered magnets improved by Tb-metal vapour sorption.
    Watanabe N; Umemoto H; Ishimaru M; Itakura M; Nishida M; Machida K
    J Microsc; 2009 Nov; 236(2):104-8. PubMed ID: 19903233
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Correlation between Microstructure and Magnetism in Ball-Milled SmCo
    Bajorek A; Łopadczak P; Prusik K; Zubko M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33567663
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanochemically Processed Nd-Fe-Co-Cr-B Nanoparticles with High Coercivity and Reduced Spin Reorientation Transition Temperature.
    Chaudhary V; Zhong Y; Parmar H; Tan X; Ramanujan RV
    Chemphyschem; 2018 Sep; 19(18):2370-2379. PubMed ID: 29878645
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Misorientations across boundary planes in a sintered NdFeB permanent magnet.
    Yuan X; Zhu J
    RSC Adv; 2022 Jul; 12(31):20412-20422. PubMed ID: 35919597
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolution of microstructure and formation mechanism of Nd-Fe-B nanoparticles prepared by low energy consumption chemical method.
    Guo Y; Zhao D; You J; Pei W; Qu Y; Wang X; Meng Q
    RSC Adv; 2018 Nov; 8(68):38850-38859. PubMed ID: 35558283
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mg
    Zhang W; Luo Y; Sun X; Zhang Z; Peng H; Yang Y; Yan W; Wang Z; Yu D
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048975
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gamma-ray irradiation on microsized Nd-Fe-B and Sr-ferrite magnets at low temperature.
    Han YC; Cha HG; Kim CW; Kim YH; Ji ES; Kang YS
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4067-72. PubMed ID: 19916410
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of metallic coatings from rare-earth permanent magnets by solutions of bromine in organic solvents.
    Orefice M; Eldosouky A; Škulj I; Binnemans K
    RSC Adv; 2019 May; 9(26):14910-14915. PubMed ID: 35516336
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical synthesis of Nd
    Ngo HM; Lee G; Haider SK; Pal U; Hawari T; Kim KM; Kim J; Kwon HW; Kang YS
    RSC Adv; 2021 Sep; 11(51):32376-32382. PubMed ID: 35495536
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct Recycling of Nd-Fe-B Magnets Based on the Recovery of Nd
    Xu X; Sturm S; Samardzija Z; Vidmar J; Scancar J; Rozman KZ
    ChemSusChem; 2019 Nov; 12(21):4754-4758. PubMed ID: 31529776
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inspired by nature: investigating tetrataenite for permanent magnet applications.
    Lewis LH; Mubarok A; Poirier E; Bordeaux N; Manchanda P; Kashyap A; Skomski R; Goldstein J; Pinkerton FE; Mishra RK; Kubic RC; Barmak K
    J Phys Condens Matter; 2014 Feb; 26(6):064213. PubMed ID: 24469336
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-throughput search for new permanent magnet materials.
    Goll D; Loeffler R; Herbst J; Karimi R; Schneider G
    J Phys Condens Matter; 2014 Feb; 26(6):064208. PubMed ID: 24469111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.