These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 36860911)
1. Rejuvenating Effector/Exhausted CAR T Cells to Stem Cell Memory-Like CAR T Cells By Resting Them in the Presence of CXCL12 and the NOTCH Ligand. Ando M; Kondo T; Tomisato W; Ito M; Shichino S; Srirat T; Mise-Omata S; Nakagawara K; Yoshimura A Cancer Res Commun; 2021 Oct; 1(1):41-55. PubMed ID: 36860911 [TBL] [Abstract][Full Text] [Related]
2. The NOTCH-FOXM1 Axis Plays a Key Role in Mitochondrial Biogenesis in the Induction of Human Stem Cell Memory-like CAR-T Cells. Kondo T; Ando M; Nagai N; Tomisato W; Srirat T; Liu B; Mise-Omata S; Ikeda M; Chikuma S; Nishimasu H; Nureki O; Ohmura M; Hayakawa N; Hishiki T; Uchibori R; Ozawa K; Yoshimura A Cancer Res; 2020 Feb; 80(3):471-483. PubMed ID: 31767627 [TBL] [Abstract][Full Text] [Related]
3. Generation and application of human induced-stem cell memory T cells for adoptive immunotherapy. Kondo T; Imura Y; Chikuma S; Hibino S; Omata-Mise S; Ando M; Akanuma T; Iizuka M; Sakai R; Morita R; Yoshimura A Cancer Sci; 2018 Jul; 109(7):2130-2140. PubMed ID: 29790621 [TBL] [Abstract][Full Text] [Related]
4. In Vitro Generation of Stem Cell Memory-Like T Cells from Activated T Cells. Ando M; Ikeda M; Yoshimura A; Kondo T Methods Mol Biol; 2020; 2111():127-139. PubMed ID: 31933204 [TBL] [Abstract][Full Text] [Related]
5. Notch-mediated conversion of activated T cells into stem cell memory-like T cells for adoptive immunotherapy. Kondo T; Morita R; Okuzono Y; Nakatsukasa H; Sekiya T; Chikuma S; Shichita T; Kanamori M; Kubo M; Koga K; Miyazaki T; Kassai Y; Yoshimura A Nat Commun; 2017 May; 8():15338. PubMed ID: 28530241 [TBL] [Abstract][Full Text] [Related]
6. In Vitro Conversion of Activated T Cells into Stem Cell Memory-Like T Cells. Kondo T; Imura Y; Ando M; Chikuma S; Yoshimura A Methods Mol Biol; 2019; 2048():41-51. PubMed ID: 31396927 [TBL] [Abstract][Full Text] [Related]
7. IL15 Enhances CAR-T Cell Antitumor Activity by Reducing mTORC1 Activity and Preserving Their Stem Cell Memory Phenotype. Alizadeh D; Wong RA; Yang X; Wang D; Pecoraro JR; Kuo CF; Aguilar B; Qi Y; Ann DK; Starr R; Urak R; Wang X; Forman SJ; Brown CE Cancer Immunol Res; 2019 May; 7(5):759-772. PubMed ID: 30890531 [TBL] [Abstract][Full Text] [Related]
8. Generation of CAR-T Hu J; Liu X Int Immunopharmacol; 2024 Jul; 136():112379. PubMed ID: 38833844 [TBL] [Abstract][Full Text] [Related]
9. Next-Generation Manufacturing Protocols Enriching T Arcangeli S; Falcone L; Camisa B; De Girardi F; Biondi M; Giglio F; Ciceri F; Bonini C; Bondanza A; Casucci M Front Immunol; 2020; 11():1217. PubMed ID: 32636841 [TBL] [Abstract][Full Text] [Related]
10. Efficient derivation of chimeric-antigen receptor-modified T Kranz E; Kuhlmann CJ; Chan J; Kim PY; Chen ISY; Kamata M Front Immunol; 2022; 13():877682. PubMed ID: 35967430 [TBL] [Abstract][Full Text] [Related]
11. CAR-T Cells with Phytohemagglutinin (PHA) Provide Anti-Cancer Capacity with Better Proliferation, Rejuvenated Effector Memory, and Reduced Exhausted T Cell Frequencies. Gulden G; Sert B; Teymur T; Ay Y; Tiryaki NN; Mishra AK; Ovali E; Tarhan N; Tastan C Vaccines (Basel); 2023 Jan; 11(2):. PubMed ID: 36851194 [TBL] [Abstract][Full Text] [Related]
12. T Meyran D; Zhu JJ; Butler J; Tantalo D; MacDonald S; Nguyen TN; Wang M; Thio N; D'Souza C; Qin VM; Slaney C; Harrison A; Sek K; Petrone P; Thia K; Giuffrida L; Scott AM; Terry RL; Tran B; Desai J; Prince HM; Harrison SJ; Beavis PA; Kershaw MH; Solomon B; Ekert PG; Trapani JA; Darcy PK; Neeson PJ Sci Transl Med; 2023 Apr; 15(690):eabk1900. PubMed ID: 37018415 [TBL] [Abstract][Full Text] [Related]
13. Suematsu M; Yagyu S; Nagao N; Kubota S; Shimizu Y; Tanaka M; Nakazawa Y; Imamura T Front Immunol; 2022; 13():770132. PubMed ID: 35154098 [TBL] [Abstract][Full Text] [Related]
14. [Preliminary study of the fourth-generation CAR-T cells targeting CS1 in the treatment of refractory and recurrent multiple myeloma]. Feng DD; Chen XH; Guo JJ; Wang KK; Zhang XM; Gao JM Zhonghua Zhong Liu Za Zhi; 2021 Jun; 43(6):657-665. PubMed ID: 34289557 [No Abstract] [Full Text] [Related]
15. Optimization of Human NK Cell Manufacturing: Fully Automated Separation, Improved Ex Vivo Expansion Using IL-21 with Autologous Feeder Cells, and Generation of Anti-CD123-CAR-Expressing Effector Cells. Klöß S; Oberschmidt O; Morgan M; Dahlke J; Arseniev L; Huppert V; Granzin M; Gardlowski T; Matthies N; Soltenborn S; Schambach A; Koehl U Hum Gene Ther; 2017 Oct; 28(10):897-913. PubMed ID: 28810809 [TBL] [Abstract][Full Text] [Related]
16. Expanding CAR T cells in human platelet lysate renders T cells with in vivo longevity. Torres Chavez A; McKenna MK; Canestrari E; Dann CT; Ramos CA; Lulla P; Leen AM; Vera JF; Watanabe N J Immunother Cancer; 2019 Nov; 7(1):330. PubMed ID: 31779709 [TBL] [Abstract][Full Text] [Related]
17. Memory stem T cells modified with a redesigned CD30-chimeric antigen receptor show an enhanced antitumor effect in Hodgkin lymphoma. Alvarez-Fernández C; Escribà-Garcia L; Caballero AC; Escudero-López E; Ujaldón-Miró C; Montserrat-Torres R; Pujol-Fernández P; Sierra J; Briones J Clin Transl Immunology; 2021; 10(4):e1268. PubMed ID: 33968404 [TBL] [Abstract][Full Text] [Related]
18. Coexpression of Xu T; Wang C; Chen X; Bai J; Wang E; Sun M Immunotherapy; 2022 Dec; 14(18):1457-1466. PubMed ID: 36597720 [TBL] [Abstract][Full Text] [Related]
19. Bonte S; de Munter S; Billiet L; Goetgeluk G; Ingels J; Jansen H; Pille M; de Cock L; Weening K; Taghon T; Leclercq G; Vandekerckhove B; Kerre T Oncoimmunology; 2021; 10(1):1954800. PubMed ID: 34367734 [TBL] [Abstract][Full Text] [Related]
20. Memory T cell, exhaustion, and tumor immunity. Ando M; Ito M; Srirat T; Kondo T; Yoshimura A Immunol Med; 2020 Mar; 43(1):1-9. PubMed ID: 31822213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]