These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36860936)

  • 1. PREDICTOR: A Physical emulatoR enabling safEty anD ergonomICs evaluation and Training of physical human-rObot collaboRation.
    Sunesson CE; Schøn DT; Hassø CNP; Chinello F; Fang C
    Front Neurorobot; 2023; 17():1080038. PubMed ID: 36860936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of cognitive conflict during unexpected robot behavior under different mental workload conditions in a physical human-robot collaboration.
    John AR; Singh AK; Gramann K; Liu D; Lin CT
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38295415
    [No Abstract]   [Full Text] [Related]  

  • 3. Imposing Motion Variability for Ergonomic Human-Robot Collaboration.
    Zolotas M; Luo R; Bazzi S; Saha D; Mabulu K; Kloeckl K; Padır T
    IISE Trans Occup Ergon Hum Factors; 2024; 12(1-2):123-134. PubMed ID: 38498062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital Twin-Driven Human Robot Collaboration Using a Digital Human.
    Maruyama T; Ueshiba T; Tada M; Toda H; Endo Y; Domae Y; Nakabo Y; Mori T; Suita K
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
    Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haptic and Visual Feedback Assistance for Dual-Arm Robot Teleoperation in Surface Conditioning Tasks.
    Girbes-Juan V; Schettino V; Demiris Y; Tornero J
    IEEE Trans Haptics; 2021; 14(1):44-56. PubMed ID: 32746376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and evaluation of design guidelines for cognitive ergonomics in human-robot collaborative assembly systems.
    Gualtieri L; Fraboni F; De Marchi M; Rauch E
    Appl Ergon; 2022 Oct; 104():103807. PubMed ID: 35763990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical Human-Robot Collaboration: Robotic Systems, Learning Methods, Collaborative Strategies, Sensors, and Actuators.
    Ogenyi UE; Liu J; Yang C; Ju Z; Liu H
    IEEE Trans Cybern; 2021 Apr; 51(4):1888-1901. PubMed ID: 31751257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Cue Haptic Guidance Through Wearables for Enhancing Human Ergonomics.
    Fani S; Ciotti S; Bianchi M
    IEEE Trans Haptics; 2022; 15(1):115-120. PubMed ID: 34941521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variable Admittance Control Based on Human-Robot Collaboration Observer Using Frequency Analysis for Sensitive and Safe Interaction.
    Kim H; Yang W
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force quantification and simulation of pedicle screw tract palpation using direct visuo-haptic volume rendering.
    Zoller EI; Faludi B; Gerig N; Jost GF; Cattin PC; Rauter G
    Int J Comput Assist Radiol Surg; 2020 Nov; 15(11):1797-1805. PubMed ID: 32959159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open core control software for surgical robots.
    Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of haptic interfaces for simulation of drill vibration in virtual temporal bone surgery.
    Ghasemloonia A; Baxandall S; Zareinia K; Lui JT; Dort JC; Sutherland GR; Chan S
    Comput Biol Med; 2016 Nov; 78():9-17. PubMed ID: 27643462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Digital and Physical Simulation to Focus on Human Factors and Ergonomics in Aviation Maintainability.
    Bernard F; Zare M; Sagot JC; Paquin R
    Hum Factors; 2020 Feb; 62(1):37-54. PubMed ID: 31361155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Review of Virtual Haptics in Surgical Simulation: A Valid Educational Tool?
    Rangarajan K; Davis H; Pucher PH
    J Surg Educ; 2020; 77(2):337-347. PubMed ID: 31564519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review and Qualitative Meta-Analysis of Digital Human Modeling and Cyber-Physical-Systems in Ergonomics 4.0.
    Paul G; Abele ND; Kluth K
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):111-123. PubMed ID: 34380380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assisting Operators in Heavy Industrial Tasks: On the Design of an Optimized Cooperative Impedance Fuzzy-Controller With Embedded Safety Rules.
    Roveda L; Haghshenas S; Caimmi M; Pedrocchi N; Molinari Tosatti L
    Front Robot AI; 2019; 6():75. PubMed ID: 33501090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the psychological effects of robot motion in physical and virtual environments.
    Sanders NE; Xie Z; Chen KB
    Appl Ergon; 2023 Oct; 112():104039. PubMed ID: 37320910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of task decision autonomy on physical ergonomics and robot performances in an industrial human-robot collaboration scenario.
    Pantano M; Yang Q; Blumberg A; Reisch R; Hauser T; Lutz B; Regulin D; Kamps T; Traganos K; Lee D
    Front Robot AI; 2022; 9():943261. PubMed ID: 36237843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.