These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 36861636)
1. Rice HEAT SHOCK PROTEIN60-3B maintains male fertility under high temperature by starch granule biogenesis. Lin S; Liu Z; Sun S; Xue F; Li H; Tursun A; Cao L; Zhang L; Wilson ZA; Zhang D; Liang W Plant Physiol; 2023 Jul; 192(3):2301-2317. PubMed ID: 36861636 [TBL] [Abstract][Full Text] [Related]
2. The CBM48 domain-containing protein FLO6 regulates starch synthesis by interacting with SSIVb and GBSS in rice. Zhang L; Li N; Zhang J; Zhao L; Qiu J; Wei C Plant Mol Biol; 2022 Mar; 108(4-5):343-361. PubMed ID: 34387795 [TBL] [Abstract][Full Text] [Related]
3. FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. Peng C; Wang Y; Liu F; Ren Y; Zhou K; Lv J; Zheng M; Zhao S; Zhang L; Wang C; Jiang L; Zhang X; Guo X; Bao Y; Wan J Plant J; 2014 Mar; 77(6):917-30. PubMed ID: 24456533 [TBL] [Abstract][Full Text] [Related]
4. A starch- and ROS-regulating heat shock protein helps maintain male fertility in heat-stressed rice plants. Chen J Plant Physiol; 2023 Jul; 192(3):2227-2229. PubMed ID: 37052180 [No Abstract] [Full Text] [Related]
5. ABA-triggered ROS burst in rice developing anthers is critical for tapetal programmed cell death induction and heat stress-induced pollen abortion. Zhao Q; Guan X; Zhou L; Asad MA; Xu Y; Pan G; Cheng F Plant Cell Environ; 2023 May; 46(5):1453-1471. PubMed ID: 36691352 [TBL] [Abstract][Full Text] [Related]
6. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility. Zhao Q; Zhou L; Liu J; Cao Z; Du X; Huang F; Pan G; Cheng F Plant Cell Rep; 2018 May; 37(5):741-757. PubMed ID: 29464319 [TBL] [Abstract][Full Text] [Related]
7. Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage. Hu Q; Wang W; Lu Q; Huang J; Peng S; Cui K BMC Plant Biol; 2021 Sep; 21(1):428. PubMed ID: 34544370 [TBL] [Abstract][Full Text] [Related]
8. Salicylic acid reverses pollen abortion of rice caused by heat stress. Feng B; Zhang C; Chen T; Zhang X; Tao L; Fu G BMC Plant Biol; 2018 Oct; 18(1):245. PubMed ID: 30340520 [TBL] [Abstract][Full Text] [Related]
9. Exogenous abscisic acid improves grain filling capacity under heat stress by enhancing antioxidative defense capability in rice. Liu X; Zhong X; Liao J; Ji P; Yang J; Cao Z; Duan X; Xiong J; Wang Y; Xu C; Yang H; Peng B; Jiang K BMC Plant Biol; 2023 Dec; 23(1):619. PubMed ID: 38057725 [TBL] [Abstract][Full Text] [Related]
10. Using RNA-seq to Profile Gene Expression of Spikelet Development in Response to Temperature and Nitrogen during Meiosis in Rice (Oryza sativa L.). Yang J; Chen X; Zhu C; Peng X; He X; Fu J; Ouyang L; Bian J; Hu L; Sun X; Xu J; He H PLoS One; 2015; 10(12):e0145532. PubMed ID: 26714321 [TBL] [Abstract][Full Text] [Related]
11. FLOURY ENDOSPERM11-2 encodes plastid HSP70-2 involved with the temperature-dependent chalkiness of rice (Oryza sativa L.) grains. Tabassum R; Dosaka T; Ichida H; Morita R; Ding Y; Abe T; Katsube-Tanaka T Plant J; 2020 Jul; 103(2):604-616. PubMed ID: 32215974 [TBL] [Abstract][Full Text] [Related]
12. Reactive oxygen species induced by heat stress during grain filling of rice (Oryza sativa L.) are involved in occurrence of grain chalkiness. Suriyasak C; Harano K; Tanamachi K; Matsuo K; Tamada A; Iwaya-Inoue M; Ishibashi Y J Plant Physiol; 2017 Sep; 216():52-57. PubMed ID: 28575747 [TBL] [Abstract][Full Text] [Related]
13. Disruptions of sugar utilization and carbohydrate metabolism in rice developing anthers aggravated heat stress-induced pollen abortion. Guan X; Zhang Y; Zhou L; Asad MAU; Zhao Q; Pan G; Cheng F Plant Physiol Biochem; 2023 Sep; 202():107991. PubMed ID: 37660606 [TBL] [Abstract][Full Text] [Related]
14. Proteome Profile of Starch Granules Purified from Rice (Oryza sativa) Endosperm. Xing S; Meng X; Zhou L; Mujahid H; Zhao C; Zhang Y; Wang C; Peng Z PLoS One; 2016; 11(12):e0168467. PubMed ID: 27992503 [TBL] [Abstract][Full Text] [Related]
15. Golgi/plastid-type manganese superoxide dismutase involved in heat-stress tolerance during grain filling of rice. Shiraya T; Mori T; Maruyama T; Sasaki M; Takamatsu T; Oikawa K; Itoh K; Kaneko K; Ichikawa H; Mitsui T Plant Biotechnol J; 2015 Dec; 13(9):1251-63. PubMed ID: 25586098 [TBL] [Abstract][Full Text] [Related]
17. Genome-Wide Transcriptome Analysis During Anthesis Reveals New Insights into the Molecular Basis of Heat Stress Responses in Tolerant and Sensitive Rice Varieties. González-Schain N; Dreni L; Lawas LM; Galbiati M; Colombo L; Heuer S; Jagadish KS; Kater MM Plant Cell Physiol; 2016 Jan; 57(1):57-68. PubMed ID: 26561535 [TBL] [Abstract][Full Text] [Related]
18. Jasmonic Acid Plays a Pivotal Role in Pollen Development and Fertility Regulation in Different Types of P(T)GMS Rice Lines. He Y; Liu C; Zhu L; Fu M; Sun Y; Zeng H Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360691 [TBL] [Abstract][Full Text] [Related]
19. RNA-seq reveals differentially expressed genes of rice (Oryza sativa) spikelet in response to temperature interacting with nitrogen at meiosis stage. Yang J; Chen X; Zhu C; Peng X; He X; Fu J; Ouyang L; Bian J; Hu L; Sun X; Xu J; He H BMC Genomics; 2015 Nov; 16():959. PubMed ID: 26576634 [TBL] [Abstract][Full Text] [Related]
20. Exploration of Sugar and Starch Metabolic Pathway Crucial for Pollen Fertility in Rice. Lee SK; Lee J; Jo M; Jeon JS Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]