These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 36861646)
1. Effects of Calcium and Phosphate on Dissolution of Enamel, Dentin and Hydroxyapatite in Citric Acid. Shellis RP; Barbour ME; Parker DM; Addy M; Lussi A Swiss Dent J; 2023 Jul; 133(7-8):432-438. PubMed ID: 36861646 [TBL] [Abstract][Full Text] [Related]
2. Effects of pH and acid concentration on erosive dissolution of enamel, dentine, and compressed hydroxyapatite. Shellis RP; Barbour ME; Jones SB; Addy M Eur J Oral Sci; 2010 Oct; 118(5):475-82. PubMed ID: 20831581 [TBL] [Abstract][Full Text] [Related]
3. Enamel dissolution in citric acid as a function of calcium and phosphate concentrations and degree of saturation with respect to hydroxyapatite. Barbour ME; Parker DM; Allen GC; Jandt KD Eur J Oral Sci; 2003 Oct; 111(5):428-33. PubMed ID: 12974688 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of hydroxyapatite dissolution by whole casein: the effects of pH, protein concentration, calcium, and ionic strength. Barbour ME; Shellis RP; Parker DM; Allen GC; Addy M Eur J Oral Sci; 2008 Oct; 116(5):473-8. PubMed ID: 18821991 [TBL] [Abstract][Full Text] [Related]
5. Effects of pH and concentration of citric, malic and lactic acids on enamel, in vitro. Hughes JA; West NX; Parker DM; van den Braak MH; Addy M J Dent; 2000 Feb; 28(2):147-52. PubMed ID: 10666974 [TBL] [Abstract][Full Text] [Related]
6. Effects of buffering properties and undissociated acid concentration on dissolution of dental enamel in relation to pH and acid type. Shellis RP; Barbour ME; Jesani A; Lussi A Caries Res; 2013; 47(6):601-11. PubMed ID: 24061229 [TBL] [Abstract][Full Text] [Related]
7. The effect of pH on the erosion of dentine and enamel by dietary acids in vitro. West NX; Hughes JA; Addy M J Oral Rehabil; 2001 Sep; 28(9):860-4. PubMed ID: 11580825 [TBL] [Abstract][Full Text] [Related]
8. Human enamel dissolution in citric acid as a function of pH in the range 2.30< or =pH< or =6.30--a nanoindentation study. Barbour ME; Parker DM; Allen GC; Jandt KD Eur J Oral Sci; 2003 Jun; 111(3):258-62. PubMed ID: 12786958 [TBL] [Abstract][Full Text] [Related]
9. An investigation of some food-approved polymers as agents to inhibit hydroxyapatite dissolution. Barbour ME; Shellis RP; Parker DM; Allen GC; Addy M Eur J Oral Sci; 2005 Dec; 113(6):457-61. PubMed ID: 16324134 [TBL] [Abstract][Full Text] [Related]
10. Chelating effect of citric acid is negligible for development of enamel erosions. Azadi-Schossig P; Becker K; Attin T Clin Oral Investig; 2016 Sep; 20(7):1577-87. PubMed ID: 26572529 [TBL] [Abstract][Full Text] [Related]
11. The addition of nano-sized hydroxyapatite to a sports drink to inhibit dental erosion: in vitro study using bovine enamel. Min JH; Kwon HK; Kim BI J Dent; 2011 Sep; 39(9):629-35. PubMed ID: 21763390 [TBL] [Abstract][Full Text] [Related]
12. Enamel erosion by some soft drinks and orange juices relative to their pH, buffering effect and contents of calcium phosphate. Larsen MJ; Nyvad B Caries Res; 1999; 33(1):81-7. PubMed ID: 9831784 [TBL] [Abstract][Full Text] [Related]
13. Erosion of dentine and enamel in vitro by dietary acids: the effect of temperature, acid character, concentration and exposure time. West NX; Hughes JA; Addy M J Oral Rehabil; 2000 Oct; 27(10):875-80. PubMed ID: 11065022 [TBL] [Abstract][Full Text] [Related]
14. The effects of acidic fluoride solutions on early enamel erosion in vivo. Hjortsjö C; Jonski G; Thrane PS; Saxegaard E; Young A Caries Res; 2009; 43(2):126-31. PubMed ID: 19321990 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of hydroxyapatite dissolution by ovalbumin as a function of pH, calcium concentration, protein concentration and acid type. Hemingway CA; Shellis RP; Parker DM; Addy M; Barbour ME Caries Res; 2008; 42(5):348-53. PubMed ID: 18714157 [TBL] [Abstract][Full Text] [Related]
16. Effect of acidic fluoride treatments on early enamel erosion lesions--a comparison of calcium and profilometric analyses. Hjortsjö C; Jonski G; Young A; Saxegaard E Arch Oral Biol; 2010 Mar; 55(3):229-34. PubMed ID: 20116782 [TBL] [Abstract][Full Text] [Related]
17. Erosive effects of different acids on bovine enamel: release of calcium and phosphate in vitro. Hannig C; Hamkens A; Becker K; Attin R; Attin T Arch Oral Biol; 2005 Jun; 50(6):541-52. PubMed ID: 15848147 [TBL] [Abstract][Full Text] [Related]
18. Morphology and structure of polymer layers protecting dental enamel against erosion. Beyer M; Reichert J; Sigusch BW; Watts DC; Jandt KD Dent Mater; 2012 Oct; 28(10):1089-97. PubMed ID: 22883479 [TBL] [Abstract][Full Text] [Related]
19. Pure hydroxyapatite as a substitute for enamel in erosion experiments. Ronay FC; Wegehaupt FJ; Becker K; Wiedemeier DB; Attin T; Lussi A; Steiger-Ronay V J Dent; 2019 May; 84():89-94. PubMed ID: 30959076 [TBL] [Abstract][Full Text] [Related]
20. Impact of the in situ formed salivary pellicle on enamel and dentine erosion induced by different acids. Wiegand A; Bliggenstorfer S; Magalhaes AC; Sener B; Attin T Acta Odontol Scand; 2008 Aug; 66(4):225-30. PubMed ID: 18607835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]