These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36861648)

  • 1. Enzyme-Powered Tubular Microrobotic Jets as Bioinspired Micropumps for Active Transmembrane Drug Transport.
    Wang L; Guo P; Jin D; Peng Y; Sun X; Chen Y; Liu X; Chen W; Wang W; Yan X; Ma X
    ACS Nano; 2023 Mar; 17(5):5095-5107. PubMed ID: 36861648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery.
    Tang S; Zhang F; Gong H; Wei F; Zhuang J; Karshalev E; Esteban-Fernández de Ávila B; Huang C; Zhou Z; Li Z; Yin L; Dong H; Fang RH; Zhang X; Zhang L; Wang J
    Sci Robot; 2020 Jun; 5(43):. PubMed ID: 33022613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Powering Motion with Enzymes.
    Zhao X; Gentile K; Mohajerani F; Sen A
    Acc Chem Res; 2018 Oct; 51(10):2373-2381. PubMed ID: 30256612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pressure-driven gas-diffusion/permeation micropump for self-activated sample transport in an extreme micro-environment.
    Wu W
    Analyst; 2018 Oct; 143(20):4819-4835. PubMed ID: 30229240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric and Scaling Effects in the Speed of Catalytic Enzyme Micropumps.
    Gao T; McNeill JM; Oliver VA; Xiao L; Mallouk TE
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39515-39523. PubMed ID: 35984896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic Reaction Enhanced Diffusion Accelerates Cargo Transport through Micro/Nano-Channels.
    Wang L; Jin D; Peng Y; Khan MY; Zhao D; Xu C; Chen W; Wang W; Ma X
    Small; 2024 May; ():e2403056. PubMed ID: 38726792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell nucleus as endogenous biological micropump.
    Gao Q; Wang W; Li X; Li Y; Ferraro P; Jiao X; Liu X; Zhang Y; Li B
    Biosens Bioelectron; 2021 Jun; 182():113166. PubMed ID: 33774431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Transmembrane Transport of DNA Nanostructures by Chemically Anchoring Artificial Receptors on Cell Membranes.
    Li M; Liu J; Deng M; Ge Z; Afshan N; Zuo X; Li Q
    Chempluschem; 2019 Apr; 84(4):323-327. PubMed ID: 31939210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convective flow reversal in self-powered enzyme micropumps.
    Ortiz-Rivera I; Shum H; Agrawal A; Sen A; Balazs AC
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2585-90. PubMed ID: 26903618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photothermal interference urease-powered polydopamine nanomotor for enhanced propulsion and synergistic therapy.
    Wu M; Liu S; Liu Z; Huang F; Xu X; Shuai Q
    Colloids Surf B Biointerfaces; 2022 Apr; 212():112353. PubMed ID: 35085936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible liquid-diode microtubes from multimodal microfluidics.
    Yang C; Li W; Zhao Y; Shang L
    Proc Natl Acad Sci U S A; 2024 Jul; 121(28):e2402331121. PubMed ID: 38959044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous microfluidic control by chemically actuated micropumps and its application to chemical analyses.
    Takashima A; Kojima K; Suzuki H
    Anal Chem; 2010 Aug; 82(16):6870-6. PubMed ID: 20669895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microchannels with Self-Pumping Walls.
    Yu T; Athanassiadis AG; Popescu MN; Chikkadi V; Güth A; Singh DP; Qiu T; Fischer P
    ACS Nano; 2020 Oct; 14(10):13673-13680. PubMed ID: 32946220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-Membrane-Based Biomimetic Systems with Bioorthogonal Functionalities.
    Huang LL; Nie W; Zhang J; Xie HY
    Acc Chem Res; 2020 Jan; 53(1):276-287. PubMed ID: 31913016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and characterization of a nanoliter drug-delivery MEMS micropump with circular bossed membrane.
    Yih TC; Wei C; Hammad B
    Nanomedicine; 2005 Jun; 1(2):164-75. PubMed ID: 17292074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remotely powered self-propelling particles and micropumps based on miniature diodes.
    Chang ST; Paunov VN; Petsev DN; Velev OD
    Nat Mater; 2007 Mar; 6(3):235-40. PubMed ID: 17293850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustofluidic stick-and-play micropump built on foil for single-cell trapping.
    Lin Y; Gao Y; Wu M; Zhou R; Chung D; Caraveo G; Xu J
    Lab Chip; 2019 Sep; 19(18):3045-3053. PubMed ID: 31406970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Light-Powered Micropump with Dynamic Collective Behavior for Reparation.
    Sun Y; Wang H; Jiang J; Zhang H; Liu L; Zhang K; Song B; Dong B
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hydrostatic pressure-driven passive micropump enhanced with siphon-based autofill function.
    Wang X; Zhao D; Phan DTT; Liu J; Chen X; Yang B; Hughes CCW; Zhang W; Lee AP
    Lab Chip; 2018 Jul; 18(15):2167-2177. PubMed ID: 29931005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.