These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 36861960)
1. Large vesicle extrusions from Wang Y; Arnold ML; Smart AJ; Wang G; Androwski RJ; Morera A; Nguyen KCQ; Schweinsberg PJ; Bai G; Cooper J; Hall DH; Driscoll M; Grant BD Elife; 2023 Mar; 12():. PubMed ID: 36861960 [No Abstract] [Full Text] [Related]
2. Mechanical force of uterine occupation enables large vesicle extrusion from proteostressed maternal neurons. Wang G; Guasp RJ; Salam S; Chuang E; Morera A; Smart AJ; Jimenez D; Shekhar S; Friedman E; Melentijevic I; Nguyen KC; Hall DH; Grant BD; Driscoll M Elife; 2024 Sep; 13():. PubMed ID: 39255003 [TBL] [Abstract][Full Text] [Related]
3. Intermediate filaments associate with aggresome-like structures in proteostressed C. elegans neurons and influence large vesicle extrusions as exophers. Arnold ML; Cooper J; Androwski R; Ardeshna S; Melentijevic I; Smart J; Guasp RJ; Nguyen KCQ; Bai G; Hall DH; Grant BD; Driscoll M Nat Commun; 2023 Jul; 14(1):4450. PubMed ID: 37488107 [TBL] [Abstract][Full Text] [Related]
4. Stress increases in exopher-mediated neuronal extrusion require lipid biosynthesis, FGF, and EGF RAS/MAPK signaling. Cooper JF; Guasp RJ; Arnold ML; Grant BD; Driscoll M Proc Natl Acad Sci U S A; 2021 Sep; 118(36):. PubMed ID: 34475208 [TBL] [Abstract][Full Text] [Related]
5. Quantitative Approaches for Scoring in vivo Neuronal Aggregate and Organelle Extrusion in Large Exopher Vesicles in C. elegans. Arnold ML; Cooper J; Grant BD; Driscoll M J Vis Exp; 2020 Sep; (163):. PubMed ID: 33016946 [TBL] [Abstract][Full Text] [Related]
6. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Melentijevic I; Toth ML; Arnold ML; Guasp RJ; Harinath G; Nguyen KC; Taub D; Parker JA; Neri C; Gabel CV; Hall DH; Driscoll M Nature; 2017 Feb; 542(7641):367-371. PubMed ID: 28178240 [TBL] [Abstract][Full Text] [Related]
7. Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells. Yu X; Lu N; Zhou Z PLoS Biol; 2008 Mar; 6(3):e61. PubMed ID: 18351800 [TBL] [Abstract][Full Text] [Related]
8. Arl8/ARL-8 functions in apoptotic cell removal by mediating phagolysosome formation in Caenorhabditis elegans. Sasaki A; Nakae I; Nagasawa M; Hashimoto K; Abe F; Saito K; Fukuyama M; Gengyo-Ando K; Mitani S; Katada T; Kontani K Mol Biol Cell; 2013 May; 24(10):1584-92. PubMed ID: 23485564 [TBL] [Abstract][Full Text] [Related]
9. The small GTPase RAB-35 defines a third pathway that is required for the recognition and degradation of apoptotic cells. Haley R; Wang Y; Zhou Z PLoS Genet; 2018 Aug; 14(8):e1007558. PubMed ID: 30138370 [TBL] [Abstract][Full Text] [Related]
10. Autophagy protein ATG-16.2 and its WD40 domain mediate the beneficial effects of inhibiting early-acting autophagy genes in C. elegans neurons. Yang Y; Arnold ML; Lange CM; Sun LH; Broussalian M; Doroodian S; Ebata H; Choy EH; Poon K; Moreno TM; Singh A; Driscoll M; Kumsta C; Hansen M Nat Aging; 2024 Feb; 4(2):198-212. PubMed ID: 38177330 [TBL] [Abstract][Full Text] [Related]
11. Autophagosomes fuse to phagosomes and facilitate the degradation of apoptotic cells in Peña-Ramos O; Chiao L; Liu X; Yu X; Yao T; He H; Zhou Z Elife; 2022 Jan; 11():. PubMed ID: 34982028 [TBL] [Abstract][Full Text] [Related]
12. The small GTPase RAB-35 facilitates the initiation of phagosome maturation and acts as a robustness factor for apoptotic cell clearance. Haley R; Zhou Z Small GTPases; 2021 May; 12(3):188-201. PubMed ID: 31607221 [TBL] [Abstract][Full Text] [Related]
13. Glia actively sculpt sensory neurons by controlled phagocytosis to tune animal behavior. Raiders S; Black EC; Bae A; MacFarlane S; Klein M; Shaham S; Singhvi A Elife; 2021 Mar; 10():. PubMed ID: 33759761 [TBL] [Abstract][Full Text] [Related]
14. Three sorting nexins drive the degradation of apoptotic cells in response to PtdIns(3)P signaling. Lu N; Shen Q; Mahoney TR; Liu X; Zhou Z Mol Biol Cell; 2011 Feb; 22(3):354-74. PubMed ID: 21148288 [TBL] [Abstract][Full Text] [Related]
15. Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Kinchen JM; Ravichandran KS Nature; 2010 Apr; 464(7289):778-82. PubMed ID: 20305638 [TBL] [Abstract][Full Text] [Related]
16. EFF-1 fusogen promotes phagosome sealing during cell process clearance in Caenorhabditis elegans. Ghose P; Rashid A; Insley P; Trivedi M; Shah P; Singhal A; Lu Y; Bao Z; Shaham S Nat Cell Biol; 2018 Apr; 20(4):393-399. PubMed ID: 29556089 [TBL] [Abstract][Full Text] [Related]
17. Phagosome maturation during the removal of apoptotic cells: receptors lead the way. Zhou Z; Yu X Trends Cell Biol; 2008 Oct; 18(10):474-85. PubMed ID: 18774293 [TBL] [Abstract][Full Text] [Related]
18. C. elegans Rab GTPase activating protein TBC-2 promotes cell corpse degradation by regulating the small GTPase RAB-5. Li W; Zou W; Zhao D; Yan J; Zhu Z; Lu J; Wang X Development; 2009 Jul; 136(14):2445-55. PubMed ID: 19542357 [TBL] [Abstract][Full Text] [Related]
19. RAB-35 and ARF-6 GTPases Mediate Engulfment and Clearance Following Linker Cell-Type Death. Kutscher LM; Keil W; Shaham S Dev Cell; 2018 Oct; 47(2):222-238.e6. PubMed ID: 30220571 [TBL] [Abstract][Full Text] [Related]