BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36862281)

  • 1. Localization and characterization θ carbonic anhydrases in Thalassiosira pseudonana.
    Nawaly H; Tanaka A; Toyoshima Y; Tsuji Y; Matsuda Y
    Photosynth Res; 2023 May; 156(2):217-229. PubMed ID: 36862281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana.
    Tachibana M; Allen AE; Kikutani S; Endo Y; Bowler C; Matsuda Y
    Photosynth Res; 2011 Sep; 109(1-3):205-21. PubMed ID: 21365259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana.
    Samukawa M; Shen C; Hopkinson BM; Matsuda Y
    Photosynth Res; 2014 Sep; 121(2-3):235-49. PubMed ID: 24414291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum.
    Kikutani S; Nakajima K; Nagasato C; Tsuji Y; Miyatake A; Matsuda Y
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9828-33. PubMed ID: 27531955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms.
    Tsuji Y; Nakajima K; Matsuda Y
    J Exp Bot; 2017 Jun; 68(14):3763-3772. PubMed ID: 28633304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physiology and genetics of CO2 concentrating mechanisms in model diatoms.
    Hopkinson BM; Dupont CL; Matsuda Y
    Curr Opin Plant Biol; 2016 Jun; 31():51-7. PubMed ID: 27055267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new widespread subclass of carbonic anhydrase in marine phytoplankton.
    Jensen EL; Clement R; Kosta A; Maberly SC; Gontero B
    ISME J; 2019 Aug; 13(8):2094-2106. PubMed ID: 31024153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-CO2-inducible bestrophins outside the pyrenoid sustain high photosynthetic efficacy in diatoms.
    Nigishi M; Shimakawa G; Yamagishi K; Amano R; Ito S; Tsuji Y; Nagasato C; Matsuda Y
    Plant Physiol; 2024 May; 195(2):1432-1445. PubMed ID: 38478576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of carbon dioxide acquisition and CO
    Matsuda Y; Hopkinson BM; Nakajima K; Dupont CL; Tsuji Y
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1728):. PubMed ID: 28717013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana.
    Clement R; Dimnet L; Maberly SC; Gontero B
    New Phytol; 2016 Mar; 209(4):1417-27. PubMed ID: 26529678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey.
    McGinn PJ; Morel FM
    Physiol Plant; 2008 May; 133(1):78-91. PubMed ID: 18405334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of enzymes relating to C4 organic acid metabolisms in the marine diatom, Thalassiosira pseudonana.
    Tanaka R; Kikutani S; Mahardika A; Matsuda Y
    Photosynth Res; 2014 Sep; 121(2-3):251-63. PubMed ID: 24414292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrenoid-core CO2-evolving machinery is essential for diatom photosynthesis in elevated CO2.
    Shimakawa G; Okuyama A; Harada H; Nakagaito S; Toyoshima Y; Nagata K; Matsuda Y
    Plant Physiol; 2023 Nov; 193(4):2298-2305. PubMed ID: 37625790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization and targeting mechanisms of two chloroplastic beta-carbonic anhydrases in the marine diatom Phaeodactylum tricornutum.
    Kitao Y; Harada H; Matsuda Y
    Physiol Plant; 2008 May; 133(1):68-77. PubMed ID: 18298418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii.
    Yamano T; Toyokawa C; Shimamura D; Matsuoka T; Fukuzawa H
    Plant Physiol; 2022 Feb; 188(2):1081-1094. PubMed ID: 34791500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma Membrane-Type Aquaporins from Marine Diatoms Function as CO
    Matsui H; Hopkinson BM; Nakajima K; Matsuda Y
    Plant Physiol; 2018 Sep; 178(1):345-357. PubMed ID: 30076224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of the marine diatom Thalassiosira pseudonana to changes in CO
    Clement R; Lignon S; Mansuelle P; Jensen E; Pophillat M; Lebrun R; Denis Y; Puppo C; Maberly SC; Gontero B
    Sci Rep; 2017 Feb; 7():42333. PubMed ID: 28181560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characterization of the δ-carbonic anhydrase from the marine diatom Thalassiosira weissflogii, TweCA.
    Del Prete S; Vullo D; De Luca V; Supuran CT; Capasso C
    J Enzyme Inhib Med Chem; 2014 Dec; 29(6):906-11. PubMed ID: 24456295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a novel γ-type carbonic anhydrase, Sjγ-CA2, in Saccharina japonica: Insights into carbon concentration mechanism in macroalgae.
    Wang W; Xu L; Jiang G; Li Z; Bi YH; Zhou ZG
    Int J Biol Macromol; 2024 Apr; 263(Pt 2):130506. PubMed ID: 38423426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of soluble beta-carbonic anhydrase in the marine diatom Phaeodactylum tricornutum. Sorting to the chloroplast and cluster formation on the girdle lamellae.
    Tanaka Y; Nakatsuma D; Harada H; Ishida M; Matsuda Y
    Plant Physiol; 2005 May; 138(1):207-17. PubMed ID: 15849303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.