These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36862290)

  • 1. Deep learning reconstruction with single-energy metal artifact reduction in pelvic computed tomography for patients with metal hip prostheses.
    Hosoi R; Yasaka K; Mizuki M; Yamaguchi H; Miyo R; Hamada A; Abe O
    Jpn J Radiol; 2023 Aug; 41(8):863-871. PubMed ID: 36862290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning Reconstruction Plus Single-Energy Metal Artifact Reduction for Supra Hyoid Neck CT in Patients With Dental Metals.
    Mizuki M; Yasaka K; Miyo R; Ohtake Y; Hamada A; Hosoi R; Abe O
    Can Assoc Radiol J; 2024 Feb; 75(1):74-81. PubMed ID: 37387607
    [No Abstract]   [Full Text] [Related]  

  • 3. Single-energy metal artifact reduction for helical computed tomography of the pelvis in patients with metal hip prostheses.
    Yasaka K; Maeda E; Hanaoka S; Katsura M; Sato J; Ohtomo K
    Jpn J Radiol; 2016 Sep; 34(9):625-32. PubMed ID: 27400700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: assessment of image quality and clinical feasibility.
    Han SC; Chung YE; Lee YH; Park KK; Kim MJ; Kim KW
    AJR Am J Roentgenol; 2014 Oct; 203(4):788-95. PubMed ID: 25247944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions.
    Morsbach F; Bickelhaupt S; Wanner GA; Krauss A; Schmidt B; Alkadhi H
    Radiology; 2013 Jul; 268(1):237-44. PubMed ID: 23513244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Iterative Metal Artifact Reduction Algorithm to CT Urography for Patients With Hip Prostheses.
    Trabzonlu TA; Terrazas M; Mozaffary A; Velichko YS; Yaghmai V
    AJR Am J Roentgenol; 2020 Jan; 214(1):137-143. PubMed ID: 31642697
    [No Abstract]   [Full Text] [Related]  

  • 7. Metal Artifact Reduction in Pelvic Computed Tomography With Hip Prostheses: Comparison of Virtual Monoenergetic Extrapolations From Dual-Energy Computed Tomography and an Iterative Metal Artifact Reduction Algorithm in a Phantom Study.
    Higashigaito K; Angst F; Runge VM; Alkadhi H; Donati OF
    Invest Radiol; 2015 Dec; 50(12):828-34. PubMed ID: 26171565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the Effects of Deep Learning Reconstruction on Abdominal CT Without Arm Elevation.
    Fujita N; Yasaka K; Katayama A; Ohtake Y; Konishiike M; Abe O
    Can Assoc Radiol J; 2023 Nov; 74(4):688-694. PubMed ID: 37041699
    [No Abstract]   [Full Text] [Related]  

  • 9. Evaluation of the quality of CT images acquired with the single energy metal artifact reduction (SEMAR) algorithm in patients with hip and dental prostheses and aneurysm embolization coils.
    Sonoda A; Nitta N; Ushio N; Nagatani Y; Okumura N; Otani H; Murata K
    Jpn J Radiol; 2015 Nov; 33(11):710-6. PubMed ID: 26403615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Deep-Learning Image Reconstruction With Hybrid Iterative Reconstruction for Evaluating Lung Nodules With High-Resolution Computed Tomography.
    Hamada A; Yasaka K; Inui S; Okimoto N; Abe O
    J Comput Assist Tomogr; 2023 Jul-Aug 01; 47(4):583-589. PubMed ID: 36877787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation Dose Reduction for 80-kVp Pediatric CT Using Deep Learning-Based Reconstruction: A Clinical and Phantom Study.
    Nagayama Y; Goto M; Sakabe D; Emoto T; Shigematsu S; Oda S; Tanoue S; Kidoh M; Nakaura T; Funama Y; Uchimura R; Takada S; Hayashi H; Hatemura M; Hirai T
    AJR Am J Roentgenol; 2022 Aug; 219(2):315-324. PubMed ID: 35195431
    [No Abstract]   [Full Text] [Related]  

  • 12. Deep learning reconstruction for high-resolution computed tomography images of the temporal bone: comparison with hybrid iterative reconstruction.
    Fujita N; Yasaka K; Hatano S; Sakamoto N; Kurokawa R; Abe O
    Neuroradiology; 2024 Jul; 66(7):1105-1112. PubMed ID: 38514472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-learning reconstruction for the evaluation of lumbar spinal stenosis in computed tomography.
    Miyo R; Yasaka K; Hamada A; Sakamoto N; Hosoi R; Mizuki M; Abe O
    Medicine (Baltimore); 2023 Jun; 102(23):e33910. PubMed ID: 37335676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image quality and metal artifact reduction in total hip arthroplasty CT: deep learning-based algorithm versus virtual monoenergetic imaging and orthopedic metal artifact reduction.
    Selles M; Wellenberg RHH; Slotman DJ; Nijholt IM; van Osch JAC; van Dijke KF; Maas M; Boomsma MF
    Eur Radiol Exp; 2024 Mar; 8(1):31. PubMed ID: 38480603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total hip prosthesis CT with single-energy projection-based metallic artifact reduction: impact on the visualization of specific periprosthetic soft tissue structures.
    Gondim Teixeira PA; Meyer JB; Baumann C; Raymond A; Sirveaux F; Coudane H; Blum A
    Skeletal Radiol; 2014 Sep; 43(9):1237-46. PubMed ID: 24910125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of Metallic Artifacts of the Post-treatment Intracranial Aneurysms: Effects of Single Energy Metal Artifact Reduction Algorithm.
    Pan YN; Chen G; Li AJ; Chen ZQ; Gao X; Huang Y; Mattson B; Li S
    Clin Neuroradiol; 2019 Jun; 29(2):277-284. PubMed ID: 29147735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT.
    Son W; Kim M; Hwang JY; Kim YW; Park C; Choo KS; Kim TU; Jang JY
    Korean J Radiol; 2022 Jul; 23(7):752-762. PubMed ID: 35695313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Deep Learning Reconstruction on Evaluating Cervical Spinal Canal Stenosis With Computed Tomography.
    Ohtake Y; Yasaka K; Hamada A; Fujita N; Abe O
    J Comput Assist Tomogr; 2023 Nov-Dec 01; 47(6):996-1001. PubMed ID: 37948377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnostic Value of Model-Based Iterative Reconstruction Combined with a Metal Artifact Reduction Algorithm during CT of the Oral Cavity.
    Kubo Y; Ito K; Sone M; Nagasawa H; Onishi Y; Umakoshi N; Hasegawa T; Akimoto T; Kusumoto M
    AJNR Am J Neuroradiol; 2020 Nov; 41(11):2132-2138. PubMed ID: 32972957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal artifact reduction (MAR) based on two-compartment physical modeling: evaluation in patients with hip implants.
    Boos J; Sawicki LM; Lanzman RS; Thomas C; Aissa J; Schleich C; Heusch P; Antoch G; Kröpil P
    Acta Radiol; 2017 Jan; 58(1):70-76. PubMed ID: 26936899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.