BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36862298)

  • 1. Phytomitigation potential and adaptive responses of helophyte Typha latifolia L. to copper smelter-influenced heavily multi-metal contamination.
    Shiryaev G; Maleva M; Borisova G; Tripti ; Voropaeva O; Kumar A
    Environ Sci Pollut Res Int; 2024 Jun; 31(27):38821-38834. PubMed ID: 36862298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.
    Klink A
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Typha latifolia (broadleaf cattail) as bioindicator of different types of pollution in aquatic ecosystems-application of self-organizing feature map (neural network).
    Klink A; Polechońska L; Cegłowska A; Stankiewicz A
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14078-86. PubMed ID: 27044291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia.
    Bonanno G; Cirelli GL
    Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation capability of Typha latifolia L. to uptake sediment toxic elements in the largest coastal wetland of the Persian Gulf.
    Haghnazar H; Sabbagh K; Johannesson KH; Pourakbar M; Aghayani E
    Mar Pollut Bull; 2023 Mar; 188():114699. PubMed ID: 36764150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE.
    Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Kump P; Nečemer M; Regvar M; Pelicon P; Schröder P
    Metallomics; 2012 Apr; 4(4):333-41. PubMed ID: 22370692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides.
    Anning AK; Akoto R
    Ecotoxicol Environ Saf; 2018 Feb; 148():97-104. PubMed ID: 29031880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail (Typha angustifolia L.).
    Duman F; Urey E; Koca FD
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17886-96. PubMed ID: 26162443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metals and metalloid bioconcentrations in the tissues of Typha latifolia grown in the four interconnected ponds of a domestic landfill site.
    Ben Salem Z; Laffray X; Al-Ashoor A; Ayadi H; Aleya L
    J Environ Sci (China); 2017 Apr; 54():56-68. PubMed ID: 28391949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nickel and copper accumulation strategies in Odontarrhena obovata growing on copper smelter-influenced and non-influenced serpentine soils: a comparative field study.
    Tripti ; Kumar A; Maleva M; Borisova G; Chukina N; Morozova M; Kiseleva I
    Environ Geochem Health; 2021 Apr; 43(4):1401-1413. PubMed ID: 32347513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability.
    Haghnazar H; Hudson-Edwards KA; Kumar V; Pourakbar M; Mahdavianpour M; Aghayani E
    Chemosphere; 2021 Dec; 285():131446. PubMed ID: 34246092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland.
    Rana V; Maiti SK
    Environ Monit Assess; 2018 May; 190(6):328. PubMed ID: 29730705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lead accumulation and association with Fe on Typha latifolia root from an urban brownfield site.
    Feng H; Qian Y; Gallagher FJ; Wu M; Zhang W; Yu L; Zhu Q; Zhang K; Liu CJ; Tappero R
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):3743-50. PubMed ID: 23161499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of urban activity in modifying water parameters, concentration and uptake of heavy metals in Typha latifolia L. into a river that crosses an industrial city.
    Strungaru SA; Nicoara M; Jitar O; Plavan G
    J Environ Health Sci Eng; 2015; 13():5. PubMed ID: 25674352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater.
    Kumari M; Tripathi BD
    Ecotoxicol Environ Saf; 2015 Feb; 112():80-6. PubMed ID: 25463857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecological health risk assessment of microplastics and heavy metals in sediments, water, hydrophytes (Alternanthera philoxeroides, Typha latifolia, and Ipomoea carnea), and fish (Labeo rohita) in Marala wetlands in Sialkot, Pakistan.
    Arshad K; Aqeel M; Noman A; Nazir A; Mahmood A; Rizvi ZF; Sarfraz W; Hyder S; Zaka S; Khalid N
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):41272-41285. PubMed ID: 36630039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative assessment of using Miscanthus × giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites.
    Nurzhanova A; Pidlisnyuk V; Abit K; Nurzhanov C; Kenessov B; Stefanovska T; Erickson L
    Environ Sci Pollut Res Int; 2019 May; 26(13):13320-13333. PubMed ID: 30903469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil contamination and plant uptake of heavy metals at polluted sites in China.
    Wang QR; Cui YS; Liu XM; Dong YT; Christie P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 May; 38(5):823-38. PubMed ID: 12744435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxic metal(loid)s contamination and potential human health risk assessment in the vicinity of century-old copper smelter, Karabash, Russia.
    Kumar A; Tripti ; Maleva M; Kiseleva I; Maiti SK; Morozova M
    Environ Geochem Health; 2020 Dec; 42(12):4113-4124. PubMed ID: 31520319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.