These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
594 related articles for article (PubMed ID: 36862411)
1. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome. Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411 [TBL] [Abstract][Full Text] [Related]
2. Mixed-methods evaluation of three natural language processing modeling approaches for measuring documented goals-of-care discussions in the electronic health record. Uyeda AM; Curtis JR; Engelberg RA; Brumback LC; Guo Y; Sibley J; Lober WB; Cohen T; Torrence J; Heywood J; Paul SR; Kross EK; Lee RY J Pain Symptom Manage; 2022 Jun; 63(6):e713-e723. PubMed ID: 35182715 [TBL] [Abstract][Full Text] [Related]
3. Identifying Goals of Care Conversations in the Electronic Health Record Using Natural Language Processing and Machine Learning. Lee RY; Brumback LC; Lober WB; Sibley J; Nielsen EL; Treece PD; Kross EK; Loggers ET; Fausto JA; Lindvall C; Engelberg RA; Curtis JR J Pain Symptom Manage; 2021 Jan; 61(1):136-142.e2. PubMed ID: 32858164 [TBL] [Abstract][Full Text] [Related]
4. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
5. Natural Language Processing to Identify Advance Care Planning Documentation in a Multisite Pragmatic Clinical Trial. Lindvall C; Deng CY; Moseley E; Agaronnik N; El-Jawahri A; Paasche-Orlow MK; Lakin JR; Volandes A; Tulsky TAIJA J Pain Symptom Manage; 2022 Jan; 63(1):e29-e36. PubMed ID: 34271146 [TBL] [Abstract][Full Text] [Related]
6. Efficacy of a Communication-Priming Intervention on Documented Goals-of-Care Discussions in Hospitalized Patients With Serious Illness: A Randomized Clinical Trial. Lee RY; Kross EK; Downey L; Paul SR; Heywood J; Nielsen EL; Okimoto K; Brumback LC; Merel SE; Engelberg RA; Curtis JR JAMA Netw Open; 2022 Apr; 5(4):e225088. PubMed ID: 35363271 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity. Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH; Easter SR JAMA Netw Open; 2022 Oct; 5(10):e2234924. PubMed ID: 36197662 [TBL] [Abstract][Full Text] [Related]
8. Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data. Marafino BJ; Park M; Davies JM; Thombley R; Luft HS; Sing DC; Kazi DS; DeJong C; Boscardin WJ; Dean ML; Dudley RA JAMA Netw Open; 2018 Dec; 1(8):e185097. PubMed ID: 30646310 [TBL] [Abstract][Full Text] [Related]
9. Intervention to Promote Communication About Goals of Care for Hospitalized Patients With Serious Illness: A Randomized Clinical Trial. Curtis JR; Lee RY; Brumback LC; Kross EK; Downey L; Torrence J; LeDuc N; Mallon Andrews K; Im J; Heywood J; Brown CE; Sibley J; Lober WB; Cohen T; Weiner BJ; Khandelwal N; Abedini NC; Engelberg RA JAMA; 2023 Jun; 329(23):2028-2037. PubMed ID: 37210665 [TBL] [Abstract][Full Text] [Related]
10. Natural Language Processing to Assess End-of-Life Quality Indicators in Cancer Patients Receiving Palliative Surgery. Lindvall C; Lilley EJ; Zupanc SN; Chien I; Udelsman BV; Walling A; Cooper Z; Tulsky JA J Palliat Med; 2019 Feb; 22(2):183-187. PubMed ID: 30328764 [TBL] [Abstract][Full Text] [Related]
11. Automated outcome classification of emergency department computed tomography imaging reports. Yadav K; Sarioglu E; Smith M; Choi HA Acad Emerg Med; 2013 Aug; 20(8):848-54. PubMed ID: 24033628 [TBL] [Abstract][Full Text] [Related]
12. Use of Natural Language Processing of Patient-Initiated Electronic Health Record Messages to Identify Patients With COVID-19 Infection. Mermin-Bunnell K; Zhu Y; Hornback A; Damhorst G; Walker T; Robichaux C; Mathew L; Jaquemet N; Peters K; Johnson TM; Wang MD; Anderson B JAMA Netw Open; 2023 Jul; 6(7):e2322299. PubMed ID: 37418261 [TBL] [Abstract][Full Text] [Related]
13. Natural Language Processing in a Clinical Decision Support System for the Identification of Venous Thromboembolism: Algorithm Development and Validation. Jin ZG; Zhang H; Tai MH; Yang Y; Yao Y; Guo YT J Med Internet Res; 2023 Apr; 25():e43153. PubMed ID: 37093636 [TBL] [Abstract][Full Text] [Related]
14. Measuring Adoption of Patient Priorities-Aligned Care Using Natural Language Processing of Electronic Health Records: Development and Validation of the Model. Razjouyan J; Freytag J; Dindo L; Kiefer L; Odom E; Halaszynski J; Silva JW; Naik AD JMIR Med Inform; 2021 Feb; 9(2):e18756. PubMed ID: 33605893 [TBL] [Abstract][Full Text] [Related]
15. Using natural language processing to improve efficiency of manual chart abstraction in research: the case of breast cancer recurrence. Carrell DS; Halgrim S; Tran DT; Buist DS; Chubak J; Chapman WW; Savova G Am J Epidemiol; 2014 Mar; 179(6):749-58. PubMed ID: 24488511 [TBL] [Abstract][Full Text] [Related]
16. Challenges of Developing a Natural Language Processing Method With Electronic Health Records to Identify Persons With Chronic Mobility Disability. Agaronnik ND; Lindvall C; El-Jawahri A; He W; Iezzoni LI Arch Phys Med Rehabil; 2020 Oct; 101(10):1739-1746. PubMed ID: 32446905 [TBL] [Abstract][Full Text] [Related]
17. Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression. Van Vleck TT; Chan L; Coca SG; Craven CK; Do R; Ellis SB; Kannry JL; Loos RJF; Bonis PA; Cho J; Nadkarni GN Int J Med Inform; 2019 Sep; 129():334-341. PubMed ID: 31445275 [TBL] [Abstract][Full Text] [Related]
18. Identifying Information Gaps in Electronic Health Records by Using Natural Language Processing: Gynecologic Surgery History Identification. Moon S; Carlson LA; Moser ED; Agnikula Kshatriya BS; Smith CY; Rocca WA; Gazzuola Rocca L; Bielinski SJ; Liu H; Larson NB J Med Internet Res; 2022 Jan; 24(1):e29015. PubMed ID: 35089141 [TBL] [Abstract][Full Text] [Related]
19. Development and Validation of a Deep Learning Model for Earlier Detection of Cognitive Decline From Clinical Notes in Electronic Health Records. Wang L; Laurentiev J; Yang J; Lo YC; Amariglio RE; Blacker D; Sperling RA; Marshall GA; Zhou L JAMA Netw Open; 2021 Nov; 4(11):e2135174. PubMed ID: 34792589 [TBL] [Abstract][Full Text] [Related]
20. A Natural Language Processing Model for COVID-19 Detection Based on Dutch General Practice Electronic Health Records by Using Bidirectional Encoder Representations From Transformers: Development and Validation Study. Homburg M; Meijer E; Berends M; Kupers T; Olde Hartman T; Muris J; de Schepper E; Velek P; Kuiper J; Berger M; Peters L J Med Internet Res; 2023 Oct; 25():e49944. PubMed ID: 37792444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]