These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36863024)

  • 1. Compact and robust deep learning architecture for fluorescence lifetime imaging and FPGA implementation.
    Zang Z; Xiao D; Wang Q; Jiao Z; Chen Y; Li DDU
    Methods Appl Fluoresc; 2023 Mar; 11(2):. PubMed ID: 36863024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hardware Inspired Neural Network for Efficient Time-Resolved Biomedical Imaging.
    Zang Z; Xiao D; Wang Q; Jiao Z; Li Z; Chen Y; Li DD
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1883-1886. PubMed ID: 36085638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceleration of Deep Neural Network Training Using Field Programmable Gate Arrays.
    Tufa GT; Andargie FA; Bijalwan A
    Comput Intell Neurosci; 2022; 2022():8387364. PubMed ID: 36299439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Customizable FPGA-Based Hardware Accelerator for Standard Convolution Processes Empowered with Quantization Applied to LiDAR Data.
    Silva J; Pereira P; Machado R; Névoa R; Melo-Pinto P; Fernandes D
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart Wide-field Fluorescence Lifetime Imaging System with CMOS Single-photon Avalanche Diode Arrays.
    Xiao D; Zang Z; Wang Q; Jiao Z; Rocca FMD; Chen Y; Li DDU
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1887-1890. PubMed ID: 36086288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Inference With 2D Convolutional Neural Networks on Field Programmable Gate Arrays for High-Rate Particle Imaging Detectors.
    Jwa YJ; Di Guglielmo G; Arnold L; Carloni L; Karagiorgi G
    Front Artif Intell; 2022; 5():855184. PubMed ID: 35664508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hardware-Friendly Low-Bit Power-of-Two Quantization Method for CNNs and Its FPGA Implementation.
    Sui X; Lv Q; Bai Y; Zhu B; Zhi L; Yang Y; Tan Z
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple and Robust Deep Learning Approach for Fast Fluorescence Lifetime Imaging.
    Wang Q; Li Y; Xiao D; Zang Z; Jiao Z; Chen Y; Li DDU
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FLAN: feature-wise latent additive neural models for biological applications.
    Nguyen AP; Vasilaki S; Martínez MR
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37031956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Runtime Programmable and Memory Bandwidth Optimized FPGA-Based Coprocessor for Deep Convolutional Neural Network.
    Shah N; Chaudhari P; Varghese K
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):5922-5934. PubMed ID: 29993989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Acceleration of 2-D and 3-D CNNs on FPGAs Using Static Block Floating Point.
    Fan H; Liu S; Que Z; Niu X; Luk W
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4473-4487. PubMed ID: 34644253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing Deep Learning Hardware Accelerator and Efficiency Evaluation.
    Qi Z; Chen W; Naqvi RA; Siddique K
    Comput Intell Neurosci; 2022; 2022():1291103. PubMed ID: 35875766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Hardware-Friendly High-Precision CNN Pruning Method and Its FPGA Implementation.
    Sui X; Lv Q; Zhi L; Zhu B; Yang Y; Zhang Y; Tan Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FPGA-Based Hybrid-Type Implementation of Quantized Neural Networks for Remote Sensing Applications.
    Wei X; Liu W; Chen L; Ma L; Chen H; Zhuang Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple phasor-based deep neural network for fluorescence lifetime imaging microscopy.
    Héliot L; Leray A
    Sci Rep; 2021 Dec; 11(1):23858. PubMed ID: 34903737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully Parallel Stochastic Computing Hardware Implementation of Convolutional Neural Networks for Edge Computing Applications.
    Frasser CF; Linares-Serrano P; de Rios IDL; Moran A; Skibinsky-Gitlin ES; Font-Rossello J; Canals V; Roca M; Serrano-Gotarredona T; Rossello JL
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10408-10418. PubMed ID: 35452392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-fusion time-resolved depth image reconstruction using a highly efficient neural network architecture.
    Zang Z; Xiao D; Day-Uei Li D
    Opt Express; 2021 Jun; 29(13):19278-19291. PubMed ID: 34266040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameterizable Design on Convolutional Neural Networks Using Chisel Hardware Construction Language.
    Madineni MC; Vega M; Yang X
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SCA: Search-Based Computing Hardware Architecture with Precision Scalable and Computation Reconfigurable Scheme.
    Chang L; Zhao X; Zhou J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FPGA Implementation for Odor Identification with Depthwise Separable Convolutional Neural Network.
    Mo Z; Luo D; Wen T; Cheng Y; Li X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33513692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.