These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36863188)

  • 1. Brain developmental trajectories associated with childhood stuttering persistence and recovery.
    Chow HM; Garnett EO; Koenraads SPC; Chang SE
    Dev Cogn Neurosci; 2023 Apr; 60():101224. PubMed ID: 36863188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroanatomical Correlates of Childhood Stuttering: MRI Indices of White and Gray Matter Development That Differentiate Persistence Versus Recovery.
    Garnett EO; Chow HM; Chang SE
    J Speech Lang Hear Res; 2019 Aug; 62(8S):2986-2998. PubMed ID: 31465710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. White matter neuroanatomical differences in young children who stutter.
    Chang SE; Zhu DC; Choo AL; Angstadt M
    Brain; 2015 Mar; 138(Pt 3):694-711. PubMed ID: 25619509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. White matter developmental trajectories associated with persistence and recovery of childhood stuttering.
    Chow HM; Chang SE
    Hum Brain Mapp; 2017 Jul; 38(7):3345-3359. PubMed ID: 28390149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter.
    Beal DS; Gracco VL; Brettschneider J; Kroll RM; De Nil LF
    Cortex; 2013 Sep; 49(8):2151-61. PubMed ID: 23140891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stuttering and gray matter morphometry: A population-based neuroimaging study in young children.
    Koenraads SPC; El Marroun H; Muetzel RL; Chang SE; Vernooij MW; Baatenburg de Jong RJ; White T; Franken MC; van der Schroeff MP
    Brain Lang; 2019 Jul; 194():121-131. PubMed ID: 31085031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain anatomy differences in childhood stuttering.
    Chang SE; Erickson KI; Ambrose NG; Hasegawa-Johnson MA; Ludlow CL
    Neuroimage; 2008 Feb; 39(3):1333-44. PubMed ID: 18023366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association Between Gray Matter Volume Variations and Energy Utilization in the Brain: Implications for Developmental Stuttering.
    Boley N; Patil S; Garnett EO; Li H; Chugani DC; Chang SE; Chow HM
    J Speech Lang Hear Res; 2021 Jun; 64(6S):2317-2324. PubMed ID: 33719533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous morphology in left hemisphere motor and premotor cortex of children who stutter.
    Garnett EO; Chow HM; Nieto-Castañón A; Tourville JA; Guenther FH; Chang SE
    Brain; 2018 Sep; 141(9):2670-2684. PubMed ID: 30084910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural network connectivity differences in children who stutter.
    Chang SE; Zhu DC
    Brain; 2013 Dec; 136(Pt 12):3709-26. PubMed ID: 24131593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurodevelopment for syntactic processing distinguishes childhood stuttering recovery versus persistence.
    Usler E; Weber-Fox C
    J Neurodev Disord; 2015; 7(1):4. PubMed ID: 25657823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. White matter microstructural differences underlying beta oscillations during speech in adults who stutter.
    Mollaei F; Mersov A; Woodbury M; Jobst C; Cheyne D; De Nil L
    Brain Lang; 2021 Apr; 215():104921. PubMed ID: 33550120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research updates in neuroimaging studies of children who stutter.
    Chang SE
    Semin Speech Lang; 2014 May; 35(2):67-79. PubMed ID: 24875668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Lag in Speech Motor Coordination During Sentence Production Is Associated With Stuttering Persistence in Young Children.
    Usler E; Smith A; Weber C
    J Speech Lang Hear Res; 2017 Jan; 60(1):51-61. PubMed ID: 28056137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. White matter tractography of the neural network for speech-motor control in children who stutter.
    Misaghi E; Zhang Z; Gracco VL; De Nil LF; Beal DS
    Neurosci Lett; 2018 Mar; 668():37-42. PubMed ID: 29309858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking Lysosomal Enzyme Targeting Genes and Energy Metabolism with Altered Gray Matter Volume in Children with Persistent Stuttering.
    Chow HM; Garnett EO; Li H; Etchell A; Sepulcre J; Drayna D; Chugani D; Chang SE
    Neurobiol Lang (Camb); 2020 Aug; 1(3):365-380. PubMed ID: 34041495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preschool speech articulation and nonword repetition abilities may help predict eventual recovery or persistence of stuttering.
    Spencer C; Weber-Fox C
    J Fluency Disord; 2014 Sep; 41():32-46. PubMed ID: 25173455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural brain differences in pre-adolescents who persist in and recover from stuttering.
    Koenraads SPC; van der Schroeff MP; van Ingen G; Lamballais S; Tiemeier H; Baatenburg de Jong RJ; White T; Franken MC; Muetzel RL
    Neuroimage Clin; 2020; 27():102334. PubMed ID: 32650280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain activity during the preparation and production of spontaneous speech in children with persistent stuttering.
    Chow HM; Garnett EO; Ratner NB; Chang SE
    Neuroimage Clin; 2023; 38():103413. PubMed ID: 37099876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tract profiles of the cerebellar peduncles in children who stutter.
    Johnson CA; Liu Y; Waller N; Chang SE
    Brain Struct Funct; 2022 Jun; 227(5):1773-1787. PubMed ID: 35220486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.