These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36863801)

  • 1. Epigenetic regulation during 1,25-dihydroxyvitamin D
    Moena D; Vargas E; Montecino M
    Vitam Horm; 2023; 122():51-74. PubMed ID: 36863801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switches in histone modifications epigenetically control vitamin D3-dependent transcriptional upregulation of the CYP24A1 gene in osteoblastic cells.
    Moena D; Merino P; Lian JB; Stein GS; Stein JL; Montecino M
    J Cell Physiol; 2020 Jun; 235(6):5328-5339. PubMed ID: 31868234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic regulation of BMP2 by 1,25-dihydroxyvitamin D3 through DNA methylation and histone modification.
    Fu B; Wang H; Wang J; Barouhas I; Liu W; Shuboy A; Bushinsky DA; Zhou D; Favus MJ
    PLoS One; 2013; 8(4):e61423. PubMed ID: 23620751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes.
    Seuter S; Pehkonen P; Heikkinen S; Carlberg C
    Biochim Biophys Acta; 2013 Dec; 1829(12):1266-75. PubMed ID: 24185200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of the vitamin D-modulated epigenome on VDR target gene regulation.
    Nurminen V; Neme A; Seuter S; Carlberg C
    Biochim Biophys Acta Gene Regul Mech; 2018 Aug; 1861(8):697-705. PubMed ID: 30018005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel mechanism of negative regulation of 1,25-dihydroxyvitamin D3-induced 25-hydroxyvitamin D3 24-hydroxylase (Cyp24a1) Transcription: epigenetic modification involving cross-talk between protein-arginine methyltransferase 5 and the SWI/SNF complex.
    Seth-Vollenweider T; Joshi S; Dhawan P; Sif S; Christakos S
    J Biol Chem; 2014 Dec; 289(49):33958-70. PubMed ID: 25324546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1,25-Dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts.
    Kim S; Shevde NK; Pike JW
    J Bone Miner Res; 2005 Feb; 20(2):305-17. PubMed ID: 15647825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1α,25-Dihydroxyvitamin D
    Ishizawa M; Akagi D; Yamamoto J; Makishima M
    J Steroid Biochem Mol Biol; 2017 Sep; 172():55-61. PubMed ID: 28578001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular endocrinology of vitamin D on the epigenome level.
    Carlberg C
    Mol Cell Endocrinol; 2017 Sep; 453():14-21. PubMed ID: 28315703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human peroxisome proliferator-activated receptor delta gene is a primary target of 1alpha,25-dihydroxyvitamin D3 and its nuclear receptor.
    Dunlop TW; Väisänen S; Frank C; Molnár F; Sinkkonen L; Carlberg C
    J Mol Biol; 2005 Jun; 349(2):248-60. PubMed ID: 15890193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenome-wide effects of vitamin D and their impact on the transcriptome of human monocytes involve CTCF.
    Seuter S; Neme A; Carlberg C
    Nucleic Acids Res; 2016 May; 44(9):4090-104. PubMed ID: 26715761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic Determinants of Vitamin D-Regulated Gene Expression.
    Pike JW; Meyer MB; Benkusky NA; Lee SM; St John H; Carlson A; Onal M; Shamsuzzaman S
    Vitam Horm; 2016; 100():21-44. PubMed ID: 26827947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin D-dependent chromatin association of CTCF in human monocytes.
    Neme A; Seuter S; Carlberg C
    Biochim Biophys Acta; 2016 Nov; 1859(11):1380-1388. PubMed ID: 27569350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ezh2-dependent H3K27me3 modification dynamically regulates vitamin D3-dependent epigenetic control of CYP24A1 gene expression in osteoblastic cells.
    Moena D; Nardocci G; Acevedo E; Lian J; Stein G; Stein J; Montecino M
    J Cell Physiol; 2020 Jun; 235(6):5404-5412. PubMed ID: 31907922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VDR microRNA expression and epigenetic silencing of vitamin D signaling in melanoma cells.
    Essa S; Denzer N; Mahlknecht U; Klein R; Collnot EM; Tilgen W; Reichrath J
    J Steroid Biochem Mol Biol; 2010 Jul; 121(1-2):110-3. PubMed ID: 20153427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-talk of Aryl Hydrocarbon Receptor (AHR)- and Vitamin D Receptor (VDR)-signaling in Human Keratinocytes.
    Christofi C; Lamnis L; Stark A; Palm H; Römer K; Vogt T; Reichrath J
    Anticancer Res; 2022 Oct; 42(10):5049-5067. PubMed ID: 36191995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice.
    Chow EC; Quach HP; Vieth R; Pang KS
    Am J Physiol Endocrinol Metab; 2013 May; 304(9):E977-89. PubMed ID: 23482451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of Methicillin-resistant Staphylococcus aureus-induced cytokines mRNA production in human bone marrow derived mesenchymal stem cells by 1,25-dihydroxyvitamin D3.
    Maiti A; Jiranek WA
    BMC Cell Biol; 2014 Mar; 15():11. PubMed ID: 24661536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamentals of vitamin D hormone-regulated gene expression.
    Pike JW; Meyer MB
    J Steroid Biochem Mol Biol; 2014 Oct; 144 Pt A():5-11. PubMed ID: 24239506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin D Signaling in the Context of Innate Immunity: Focus on Human Monocytes.
    Carlberg C
    Front Immunol; 2019; 10():2211. PubMed ID: 31572402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.