BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 36864311)

  • 1. Green synthesis and multifunctional applications of nitrogen-doped carbon quantum dots via one-step hydrothermal carbonization of Curcuma zedoaria.
    Zhang Y; Li P; Yan H; Guo Q; Xu Q; Su W
    Anal Bioanal Chem; 2023 Apr; 415(10):1917-1931. PubMed ID: 36864311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis of N-rich carbon quantum dots from porphyrins as efficient probes for bioimaging and biosensing in living cells.
    Wu F; Su H; Wang K; Wong WK; Zhu X
    Int J Nanomedicine; 2017; 12():7375-7391. PubMed ID: 29066889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cationic carbon quantum dots derived from alginate for gene delivery: One-step synthesis and cellular uptake.
    Zhou J; Deng W; Wang Y; Cao X; Chen J; Wang Q; Xu W; Du P; Yu Q; Chen J; Spector M; Yu J; Xu X
    Acta Biomater; 2016 Sep; 42():209-219. PubMed ID: 27321673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green synthesis of carbon quantum dots and their environmental applications.
    Manikandan V; Lee NY
    Environ Res; 2022 Sep; 212(Pt B):113283. PubMed ID: 35461844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile fabrication of fluorescent Fe-doped carbon quantum dots for dopamine sensing and bioimaging application.
    Zhuo S; Guan Y; Li H; Fang J; Zhang P; Du J; Zhu C
    Analyst; 2019 Jan; 144(2):656-662. PubMed ID: 30484788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrothermal Synthesis of Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probes for the Detection of Dopamine.
    Zhao C; Jiao Y; Hua J; Yang J; Yang Y
    J Fluoresc; 2018 Jan; 28(1):269-276. PubMed ID: 29116607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two of a kind but different: Luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging.
    Chatzimitakos T; Kasouni A; Sygellou L; Avgeropoulos A; Troganis A; Stalikas C
    Talanta; 2017 Dec; 175():305-312. PubMed ID: 28841995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging.
    Shen TY; Jia PY; Chen DS; Wang LN
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119282. PubMed ID: 33316652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step sonochemical synthesis of versatile nitrogen-doped carbon quantum dots for sensitive detection of Fe
    Lu M; Zhou L
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():352-359. PubMed ID: 31029328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide-assisted synthesis of N, S Co-doped carbon quantum dots for fluorescence detection of multiple heavy metal ions.
    Shen Y; Rong M; Qu X; Zhao B; Zou J; Liu Z; Bao Y; He Y; Li S; Wang X; Chen M; Chen K; Zhang Y; Niu L
    Talanta; 2022 May; 241():123224. PubMed ID: 35066284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of N-doped carbon dots for direct/indirect detection of heavy metal ions and cell imaging.
    Xu Z; Liu J; Wang K; Yan B; Hu S; Ren X; Gao Z
    Environ Sci Pollut Res Int; 2021 Apr; 28(16):19878-19889. PubMed ID: 33410047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen, sulfur-doped carbon quantum dots with large Stokes shift for real-time monitoring of pH in living cells.
    Zhao X; Wang H; Liu Q; Chen X
    Talanta; 2024 Mar; 269():125479. PubMed ID: 38039680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Properties of Nitrogen-Doped Carbon Quantum Dots Using Lactic Acid as Carbon Source.
    Chang K; Zhu Q; Qi L; Guo M; Gao W; Gao Q
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe
    Qi H; Teng M; Liu M; Liu S; Li J; Yu H; Teng C; Huang Z; Liu H; Shao Q; Umar A; Ding T; Gao Q; Guo Z
    J Colloid Interface Sci; 2019 Mar; 539():332-341. PubMed ID: 30594008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Fe
    Nagaraj M; Ramalingam S; Murugan C; Aldawood S; Jin JO; Choi I; Kim M
    Environ Res; 2022 Sep; 212(Pt B):113273. PubMed ID: 35439456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-doped carbon quantum dots: facile synthesis and application as a "turn-off" fluorescent probe for detection of Hg2+ ions.
    Zhang R; Chen W
    Biosens Bioelectron; 2014 May; 55():83-90. PubMed ID: 24365697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and application of solvent-modulated self-doped N-S multicolour fluorescence carbon quantum dots.
    Xu J; Li J; Wang C; Zhao W
    Luminescence; 2020 Feb; 35(1):34-42. PubMed ID: 31423706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient dual-mode colorimetric/fluorometric sensor for the detection of copper ions and vitamin C based on pH-sensitive amino-terminated nitrogen-doped carbon quantum dots: effect of reactive oxygen species and antioxidants.
    Kalaiyarasan G; Joseph J
    Anal Bioanal Chem; 2019 May; 411(12):2619-2633. PubMed ID: 30903223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rice Husk-Derived Carbon Quantum Dots-Based Dual-Mode Nanoprobe for Selective and Sensitive Detection of Fe
    Kundu A; Maity B; Basu S
    ACS Biomater Sci Eng; 2022 Nov; 8(11):4764-4776. PubMed ID: 36200295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-high quantum yield nitrogen-doped carbon quantum dots and their versatile application in fluorescence sensing, bioimaging and anti-counterfeiting.
    Tan A; Yang G; Wan X
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119583. PubMed ID: 33652271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.