These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 36864337)
21. Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress. Nadeem SM; Ahmad M; Tufail MA; Asghar HN; Nazli F; Zahir ZA Physiol Plant; 2021 Jun; 172(2):463-476. PubMed ID: 32949405 [TBL] [Abstract][Full Text] [Related]
22. Characterization of biosurfactants from indigenous soil bacteria recovered from oil contaminated sites. Kumar G; Kumar R; Sharma A J Environ Biol; 2015 Sep; 36(5):1101-4. PubMed ID: 26521551 [TBL] [Abstract][Full Text] [Related]
23. Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid Southwestern soils. Bodour AA; Drees KP; Maier RM Appl Environ Microbiol; 2003 Jun; 69(6):3280-7. PubMed ID: 12788727 [TBL] [Abstract][Full Text] [Related]
24. Profiling of Indigenous Biosurfactant-Producing Elenga-Wilson PS; Kayath CA; Mokemiabeka NS; Nzaou SAE; Nguimbi E; Ahombo G Int J Microbiol; 2021; 2021():9565930. PubMed ID: 34567125 [TBL] [Abstract][Full Text] [Related]
25. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Mumtaz MZ; Ahmad M; Jamil M; Hussain T Microbiol Res; 2017 Sep; 202():51-60. PubMed ID: 28647123 [TBL] [Abstract][Full Text] [Related]
26. Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. Pacwa-Płociniczak M; Płociniczak T; Iwan J; Żarska M; Chorążewski M; Dzida M; Piotrowska-Seget Z J Environ Manage; 2016 Mar; 168():175-84. PubMed ID: 26708648 [TBL] [Abstract][Full Text] [Related]
27. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Ali S; Hameed S; Shahid M; Iqbal M; Lazarovits G; Imran A Microbiol Res; 2020 Feb; 232():126389. PubMed ID: 31821969 [TBL] [Abstract][Full Text] [Related]
29. Biosurfactant production and hydrocarbon degradation activity of endophytic bacteria isolated from Chelidonium majus L. Marchut-Mikolajczyk O; Drożdżyński P; Pietrzyk D; Antczak T Microb Cell Fact; 2018 Nov; 17(1):171. PubMed ID: 30390702 [TBL] [Abstract][Full Text] [Related]
30. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Zahid M; Abbasi MK; Hameed S; Rahim N Front Microbiol; 2015; 6():207. PubMed ID: 25852667 [TBL] [Abstract][Full Text] [Related]
31. Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Lee DW; Lee H; Kwon BO; Khim JS; Yim UH; Kim BS; Kim JJ Environ Pollut; 2018 Oct; 241():254-264. PubMed ID: 29807284 [TBL] [Abstract][Full Text] [Related]
33. Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Islam F; Yasmeen T; Arif MS; Riaz M; Shahzad SM; Imran Q; Ali I Plant Physiol Biochem; 2016 Nov; 108():456-467. PubMed ID: 27575042 [TBL] [Abstract][Full Text] [Related]
34. Increased iron-stress resilience of maize through inoculation of siderophore-producing Arthrobacter globiformis from mine. Sharma M; Mishra V; Rau N; Sharma RS J Basic Microbiol; 2016 Jul; 56(7):719-35. PubMed ID: 26632776 [TBL] [Abstract][Full Text] [Related]
35. Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it's potential for oil contaminated soil remediation. Phulpoto IA; Yu Z; Hu B; Wang Y; Ndayisenga F; Li J; Liang H; Qazi MA Microb Cell Fact; 2020 Jul; 19(1):145. PubMed ID: 32690027 [TBL] [Abstract][Full Text] [Related]
36. Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria. Das AJ; Kumar R J Environ Manage; 2016 Jun; 174():79-86. PubMed ID: 27016896 [TBL] [Abstract][Full Text] [Related]
37. Diversity, distribution and multi-functional attributes of bacterial communities associated with the rhizosphere and endosphere of timothy (Phleum pratense L.). Saleh D; Jarry J; Rani M; Aliferis KA; Seguin P; Jabaji SH J Appl Microbiol; 2019 Sep; 127(3):794-811. PubMed ID: 31125997 [TBL] [Abstract][Full Text] [Related]
38. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance). Hassanshahian M Mar Pollut Bull; 2014 Sep; 86(1-2):361-366. PubMed ID: 25037876 [TBL] [Abstract][Full Text] [Related]
39. Plant growth promoting and antifungal asset of indigenous rhizobacteria secluded from saffron (Crocus sativus L.) rhizosphere. Rasool A; Imran Mir M; Zulfajri M; Hanafiah MM; Azeem Unnisa S; Mahboob M Microb Pathog; 2021 Jan; 150():104734. PubMed ID: 33429050 [TBL] [Abstract][Full Text] [Related]
40. Enhanced biodegradation of crude oil in soil by a developed bacterial consortium and indigenous plant growth promoting bacteria. Diallo MM; Vural C; Cay H; Ozdemir G J Appl Microbiol; 2021 Apr; 130(4):1192-1207. PubMed ID: 32916758 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]