These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36864453)

  • 1. Scorpionfish rapidly change colour in response to their background.
    John L; Santon M; Michiels NK
    Front Zool; 2023 Mar; 20(1):10. PubMed ID: 36864453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scorpionfish adjust skin pattern contrast on different backgrounds.
    John L; Santon M; Michiels NK
    Ecol Evol; 2024 Mar; 14(3):e11124. PubMed ID: 38476704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redirection of ambient light improves predator detection in a diurnal fish.
    Santon M; Bitton PP; Dehm J; Fritsch R; Harant UK; Anthes N; Michiels NK
    Proc Biol Sci; 2020 Jan; 287(1919):20192292. PubMed ID: 31964304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intertidal gobies acclimate rate of luminance change for background matching with shifts in seasonal temperature.
    da Silva CRB; van den Berg CP; Condon ND; Riginos C; Wilson RS; Cheney KL
    J Anim Ecol; 2020 Jul; 89(7):1735-1746. PubMed ID: 32227334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rockpool gobies change colour for camouflage.
    Stevens M; Lown AE; Denton AM
    PLoS One; 2014; 9(10):e110325. PubMed ID: 25333382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Camouflage in lichen moths: Field predation experiments and avian vision modelling demonstrate the importance of wing pattern elements and background for survival.
    Mark CJ; O'Hanlon JC; Holwell GI
    J Anim Ecol; 2022 Dec; 91(12):2358-2369. PubMed ID: 36169598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A context analysis of bobbing and fin-flicking in a small marine benthic fish.
    Santon M; Deiss F; Bitton PP; Michiels NK
    Ecol Evol; 2021 Feb; 11(3):1254-1263. PubMed ID: 33598128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Countershading enhances camouflage by reducing prey contrast.
    Donohue CG; Hemmi JM; Kelley JL
    Proc Biol Sci; 2020 May; 287(1927):20200477. PubMed ID: 32396802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red fluorescence of the triplefin
    Bitton PP; Harant UK; Fritsch R; Champ CM; Temple SE; Michiels NK
    R Soc Open Sci; 2017 Mar; 4(3):161009. PubMed ID: 28405391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying camouflage: how to predict detectability from appearance.
    Troscianko J; Skelhorn J; Stevens M
    BMC Evol Biol; 2017 Jan; 17(1):7. PubMed ID: 28056761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Daytime eyeshine contributes to pupil camouflage in a cryptobenthic marine fish.
    Santon M; Bitton PP; Harant UK; Michiels NK
    Sci Rep; 2018 May; 8(1):7368. PubMed ID: 29743512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colour change of twig-mimicking peppered moth larvae is a continuous reaction norm that increases camouflage against avian predators.
    Eacock A; Rowland HM; Edmonds N; Saccheri IJ
    PeerJ; 2017; 5():e3999. PubMed ID: 29158965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Background complexity can mitigate poor camouflage.
    Rowe ZW; Austin DJD; Chippington N; Flynn W; Starkey F; Wightman EJ; Scott-Samuel NE; Cuthill IC
    Proc Biol Sci; 2021 Nov; 288(1963):20212029. PubMed ID: 34814749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal analysis of the chromatic flash VEP--separate colour and luminance contrast components.
    Klistorner A; Crewther DP; Crewther SG
    Vision Res; 1998 Dec; 38(24):3979-4000. PubMed ID: 10211389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Vertical Positioning as Anti-Predator Behavior: The Case of a Prey Fish Cohabiting with Multiple Predatory Fish within Temperate Marine Algal Forests.
    Thiriet PD; Di Franco A; Cheminée A; Mangialajo L; Guidetti P; Branthomme S; Francour P
    Animals (Basel); 2022 Mar; 12(7):. PubMed ID: 35405816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled iris radiance in a diurnal fish looking at prey.
    Michiels NK; Seeburger VC; Kalb N; Meadows MG; Anthes N; Mailli AA; Jack CB
    R Soc Open Sci; 2018 Feb; 5(2):170838. PubMed ID: 29515824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Background matching and disruptive coloration as habitat-specific strategies for camouflage.
    Price N; Green S; Troscianko J; Tregenza T; Stevens M
    Sci Rep; 2019 May; 9(1):7840. PubMed ID: 31127182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCR-based identification of adriatic specimen of three scorpionfish species (Scorpaenidae, Teleostei).
    Saju JM; Németh S; Szűcs R; Sukumaran R; Lim Z; Wong L; Orbán L; Bercsényi M
    Acta Biol Hung; 2014 Jun; 65(2):132-43. PubMed ID: 24873907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromaticity in the UV/blue range facilitates the search for achromatically background-matching prey in birds.
    Stobbe N; Dimitrova M; Merilaita S; Schaefer HM
    Philos Trans R Soc Lond B Biol Sci; 2009 Feb; 364(1516):511-7. PubMed ID: 19000974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalist camouflage can be more successful than microhabitat specialisation in natural environments.
    Briolat ES; Arenas LM; Hughes AE; Liggins E; Stevens M
    BMC Ecol Evol; 2021 Aug; 21(1):151. PubMed ID: 34344323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.