BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36864663)

  • 1. Expanding the CRISPR toolbox for Chinese hamster ovary cells with comprehensive tools for Mad7 genome editing.
    Rojek JB; Basavaraju Y; Nallapareddy S; Bulté DB; Baumgartner R; Schoffelen S; Grav LM; Goletz S; Pedersen LE
    Biotechnol Bioeng; 2023 Jun; 120(6):1478-1491. PubMed ID: 36864663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CRISPR-Cas12a Platform for Accurate Genome Editing, Gene Disruption, and Efficient Transgene Integration in Human Immune Cells.
    Mohr M; Damas N; Gudmand-Høyer J; Zeeberg K; Jedrzejczyk D; Vlassis A; Morera-Gómez M; Pereira-Schoning S; Puš U; Oliver-Almirall A; Lyholm Jensen T; Baumgartner R; Tate Weinert B; Gill RT; Warnecke T
    ACS Synth Biol; 2023 Feb; 12(2):375-389. PubMed ID: 36750230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ErCas12a CRISPR-MAD7 for Model Generation in Human Cells, Mice, and Rats.
    Liu Z; Schiel JA; Maksimova E; Strezoska Ž; Zhao G; Anderson EM; Wu Y; Warren J; Bartels A; van Brabant Smith A; Lowe CE; Forbes KP
    CRISPR J; 2020 Apr; 3(2):97-108. PubMed ID: 32315227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas12a-mediated CHO genome engineering can be effectively integrated at multiple stages of the cell line generation process for bioproduction.
    Schweickert PG; Wang N; Sandefur SL; Lloyd ME; Konieczny SF; Frye CC; Cheng Z
    Biotechnol J; 2021 Apr; 16(4):e2000308. PubMed ID: 33369118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome editing in plants with MAD7 nuclease.
    Lin Q; Zhu Z; Liu G; Sun C; Lin D; Xue C; Li S; Zhang D; Gao C; Wang Y; Qiu JL
    J Genet Genomics; 2021 Jun; 48(6):444-451. PubMed ID: 34120856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool.
    Ronda C; Pedersen LE; Hansen HG; Kallehauge TB; Betenbaugh MJ; Nielsen AT; Kildegaard HF
    Biotechnol Bioeng; 2014 Aug; 111(8):1604-16. PubMed ID: 24827782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells.
    Grav LM; la Cour Karottki KJ; Lee JS; Kildegaard HF
    Methods Mol Biol; 2017; 1603():101-118. PubMed ID: 28493126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives.
    Lee JS; Grav LM; Lewis NE; Faustrup Kildegaard H
    Biotechnol J; 2015 Jul; 10(7):979-94. PubMed ID: 26058577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding and understanding the CRISPR toolbox for Bacillus subtilis with MAD7 and dMAD7.
    Price MA; Cruz R; Bryson J; Escalettes F; Rosser SJ
    Biotechnol Bioeng; 2020 Jun; 117(6):1805-1816. PubMed ID: 32077487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9 as a Genome Editing Tool for Targeted Gene Integration in CHO Cells.
    Sergeeva D; Camacho-Zaragoza JM; Lee JS; Kildegaard HF
    Methods Mol Biol; 2019; 1961():213-232. PubMed ID: 30912048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the genome editing toolbox of Saccharomyces cerevisiae with the endonuclease ErCas12a.
    Bennis NX; Anderson JP; Kok SMC; Daran JG
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 37791490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of CRISPR-MAD7 and CRISPR-Cas9 for Gene Disruptions in
    Smirnov K; Weiss F; Hatzl AM; Rieder L; Olesen K; Jensen S; Glieder A
    J Fungi (Basel); 2024 Mar; 10(3):. PubMed ID: 38535206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing ErCas12a for efficient gene editing in Arabidopsis thaliana.
    Pietralla J; Capdeville N; Schindele P; Puchta H
    Plant Biotechnol J; 2024 Feb; 22(2):401-412. PubMed ID: 37864303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment.
    Grav LM; Lee JS; Gerling S; Kallehauge TB; Hansen AH; Kol S; Lee GM; Pedersen LE; Kildegaard HF
    Biotechnol J; 2015 Sep; 10(9):1446-56. PubMed ID: 25864574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPeering: Bioengineering the Host Cells through CRISPRCas9 Genome Editing System as the Next-generation of Cell Factories.
    Morowvat MH
    Recent Pat Biotechnol; 2021 Oct; 15(2):137-147. PubMed ID: 33874877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo assembly and annotation of the CHOZN® GS
    Kretzmer C; Narasimhan RL; Lal RD; Balassi V; Ravellette J; Kotekar Manjunath AK; Koshy JJ; Viano M; Torre S; Zanda VM; Kumravat M; Saldanha KMR; Chandranpillai H; Nihad I; Zhong F; Sun Y; Gustin J; Borgschulte T; Liu J; Razafsky D
    Biotechnol Bioeng; 2022 Dec; 119(12):3632-3646. PubMed ID: 36073082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Site-Specific Integration Reporter System That Enables Rapid Evaluation of CRISPR/Cas9-Mediated Genome Editing Strategies in CHO Cells.
    Hamaker NK; Lee KH
    Biotechnol J; 2020 Aug; 15(8):e2000057. PubMed ID: 32500600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR Technologies in Chinese Hamster Ovary Cell Line Engineering.
    Glinšek K; Bozovičar K; Bratkovič T
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-interceded CHO cell line development approaches.
    Amiri S; Adibzadeh S; Ghanbari S; Rahmani B; Kheirandish MH; Farokhi-Fard A; Dastjerdeh MS; Davami F
    Biotechnol Bioeng; 2023 Apr; 120(4):865-902. PubMed ID: 36597180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A ribonucleoprotein-based decaplex CRISPR/Cas9 knockout strategy for CHO host engineering.
    Carver J; Kern M; Ko P; Greenwood-Goodwin M; Yu XC; Duan D; Tang D; Misaghi S; Auslaender S; Haley B; Yuk IH; Shen A
    Biotechnol Prog; 2022 Jan; 38(1):e3212. PubMed ID: 34538022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.