BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 36864755)

  • 1. Molecular mechanisms of cancer cachexia-related loss of skeletal muscle mass: data analysis from preclinical and clinical studies.
    Martin A; Gallot YS; Freyssenet D
    J Cachexia Sarcopenia Muscle; 2023 Jun; 14(3):1150-1167. PubMed ID: 36864755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia.
    Silva KA; Dong J; Dong Y; Dong Y; Schor N; Tweardy DJ; Zhang L; Mitch WE
    J Biol Chem; 2015 Apr; 290(17):11177-87. PubMed ID: 25787076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myostatin is a novel tumoral factor that induces cancer cachexia.
    Lokireddy S; Wijesoma IW; Bonala S; Wei M; Sze SK; McFarlane C; Kambadur R; Sharma M
    Biochem J; 2012 Aug; 446(1):23-36. PubMed ID: 22621320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myostatin/activin pathway antagonism: molecular basis and therapeutic potential.
    Han HQ; Zhou X; Mitch WE; Goldberg AL
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2333-47. PubMed ID: 23721881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic Alcohol Consumption Enhances Skeletal Muscle Wasting in Mice Bearing Cachectic Cancers: The Role of TNFα/Myostatin Axis.
    Li Y; Zhang F; Modrak S; Little A; Zhang H
    Alcohol Clin Exp Res; 2020 Jan; 44(1):66-77. PubMed ID: 31657476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear transcription factor κ B activation and protein turnover adaptations in skeletal muscle of patients with progressive stages of lung cancer cachexia.
    Op den Kamp CM; Langen RC; Snepvangers FJ; de Theije CC; Schellekens JM; Laugs F; Dingemans AM; Schols AM
    Am J Clin Nutr; 2013 Sep; 98(3):738-48. PubMed ID: 23902785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of TGF-β signaling in muscle atrophy, sarcopenia and cancer cachexia.
    Lan XQ; Deng CJ; Wang QQ; Zhao LM; Jiao BW; Xiang Y
    Gen Comp Endocrinol; 2024 Jul; 353():114513. PubMed ID: 38604437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Pathways: Cachexia Signaling-A Targeted Approach to Cancer Treatment.
    Miyamoto Y; Hanna DL; Zhang W; Baba H; Lenz HJ
    Clin Cancer Res; 2016 Aug; 22(16):3999-4004. PubMed ID: 27340276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the beta
    Salazar-Degracia A; Busquets S; Argilés JM; Bargalló-Gispert N; López-Soriano FJ; Barreiro E
    Biochimie; 2018 Jun; 149():79-91. PubMed ID: 29654866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological strategies in lung cancer-induced cachexia: effects on muscle proteolysis, autophagy, structure, and weakness.
    Chacon-Cabrera A; Fermoselle C; Urtreger AJ; Mateu-Jimenez M; Diament MJ; de Kier Joffé ED; Sandri M; Barreiro E
    J Cell Physiol; 2014 Nov; 229(11):1660-72. PubMed ID: 24615622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TNF-α and cancer cachexia: Molecular insights and clinical implications.
    Patel HJ; Patel BM
    Life Sci; 2017 Feb; 170():56-63. PubMed ID: 27919820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-Deoxy-D-glucose Alleviates Cancer Cachexia-Induced Muscle Wasting by Enhancing Ketone Metabolism and Inhibiting the Cori Cycle.
    Wei L; Wang R; Wazir J; Lin K; Song S; Li L; Pu W; Zhao C; Wang Y; Su Z; Wang H
    Cells; 2022 Sep; 11(19):. PubMed ID: 36230949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of the ubiquitin-proteasome proteolytic pathway in cancer cachexia.
    Attaix D; Combaret L; Tilignac T; Taillandier D
    Mol Biol Rep; 1999 Apr; 26(1-2):77-82. PubMed ID: 10363651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular therapeutic strategies targeting pancreatic cancer induced cachexia.
    Yakovenko A; Cameron M; Trevino JG
    World J Gastrointest Surg; 2018 Dec; 10(9):95-106. PubMed ID: 30622678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer cachexia signaling pathways continue to emerge yet much still points to the proteasome.
    Acharyya S; Guttridge DC
    Clin Cancer Res; 2007 Mar; 13(5):1356-61. PubMed ID: 17332276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-cachexia in patients with stages I-III non-small cell lung cancer: systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system.
    Op den Kamp CM; Langen RC; Minnaard R; Kelders MC; Snepvangers FJ; Hesselink MK; Dingemans AC; Schols AM
    Lung Cancer; 2012 Apr; 76(1):112-7. PubMed ID: 22018880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRAF6 coordinates the activation of autophagy and ubiquitin-proteasome systems in atrophying skeletal muscle.
    Paul PK; Kumar A
    Autophagy; 2011 May; 7(5):555-6. PubMed ID: 21412053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ubiquitin-proteasome pathway as a therapeutic target for muscle wasting.
    Tisdale MJ
    J Support Oncol; 2005; 3(3):209-17. PubMed ID: 15915823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mediators of cachexia in cancer patients.
    Argilés JM; López-Soriano FJ; Busquets S
    Nutrition; 2019 Oct; 66():11-15. PubMed ID: 31177056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Systemic and local mechanisms leading to cachexia in cancer].
    Grabiec K; Burchert M; Milewska M; Błaszczyk M; Grzelkowska-Kowalczyk K
    Postepy Hig Med Dosw (Online); 2013 Dec; 67():1397-409. PubMed ID: 24493689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.