These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36864775)

  • 21. Two-dimensional self-assembly of hydrophobic nanoparticles at oil/water interfaces via nanoscale phase separation of mixed ligands.
    Liu SJ; Li YJ; Wang YM; Liu X; Yeung ES
    J Colloid Interface Sci; 2013 Oct; 407():243-9. PubMed ID: 23895950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. pH-Sensitive Reversible Programmed Targeting Strategy by the Self-Assembly/Disassembly of Gold Nanoparticles.
    Ma J; Hu Z; Wang W; Wang X; Wu Q; Yuan Z
    ACS Appl Mater Interfaces; 2017 May; 9(20):16767-16777. PubMed ID: 28489342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ligand Interactions and Nanoparticle Shapes Guide the Pathways toward Interfacial Self-Assembly.
    Gupta U; Escobedo FA
    Langmuir; 2022 Feb; 38(5):1738-1747. PubMed ID: 35084868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoassemblies of colloidal gold nanoparticles by oxygen-induced inorganic ligand replacement.
    Wang M; Chen S; Xia Y; Zhang Y; Huang W; Zheng J; Li Z
    Langmuir; 2010 Jun; 26(12):9351-6. PubMed ID: 20232809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Versatile and robust synthesis process for the fine control of the chemical composition and core-crystallinity of spherical core-shell Au@Ag nanoparticles.
    Lee S; Portalès H; Walls M; Beaunier P; Goubet N; Tremblay B; Margueritat J; Saviot L; Courty A
    Nanotechnology; 2021 Feb; 32(9):095604. PubMed ID: 33096540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Martini Coarse Grained Model of Citrate-Capped Gold Nanoparticles Interacting with Lipid Bilayers.
    Salassi S; Caselli L; Cardellini J; Lavagna E; Montis C; Berti D; Rossi G
    J Chem Theory Comput; 2021 Oct; 17(10):6597-6609. PubMed ID: 34491056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directing Gold Nanoparticles into Free-Standing Honeycomb-Like Ordered Mesoporous Superstructures.
    Wu X; Chen J; Xie L; Li J; Shi J; Luo S; Zhao X; Deng K; He D; He J; Luo J; Wang Z; Quan Z
    Small; 2019 Aug; 15(31):e1901304. PubMed ID: 31120188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superlattice growth and rearrangement during evaporation-induced nanoparticle self-assembly.
    Josten E; Wetterskog E; Glavic A; Boesecke P; Feoktystov A; Brauweiler-Reuters E; Rücker U; Salazar-Alvarez G; Brückel T; Bergström L
    Sci Rep; 2017 Jun; 7(1):2802. PubMed ID: 28584236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanocrystals self-assembled in superlattices directed by the solvent-organic capping interaction.
    Dalmaschio CJ; da Silveira Firmiano EG; Pinheiro AN; Sobrinho DG; Farias de Moura A; Leite ER
    Nanoscale; 2013 Jun; 5(12):5602-10. PubMed ID: 23685460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution.
    Tan SF; Chee SW; Lin G; Mirsaidov U
    Acc Chem Res; 2017 Jun; 50(6):1303-1312. PubMed ID: 28485945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA Structure-Stabilized Liquid-Liquid Self-Assembled Ordered Au Nanoparticle Interface for Sensitive Detection of MiRNA 155.
    Wu CJ; Huang SQ; Wang YY; Chai YQ; Yuan R; Yang X
    Anal Chem; 2021 Aug; 93(31):11019-11024. PubMed ID: 34324804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly Selective and Repeatable Surface-Enhanced Resonance Raman Scattering Detection for Epinephrine in Serum Based on Interface Self-Assembled 2D Nanoparticles Arrays.
    Zhou B; Li X; Tang X; Li P; Yang L; Liu J
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7772-7779. PubMed ID: 28177221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A convenient phase transfer protocol to functionalize gold nanoparticles with short alkylamine ligands.
    Yang G; Chang WS; Hallinan DT
    J Colloid Interface Sci; 2015 Dec; 460():164-72. PubMed ID: 26319333
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modifying Thermal Switchability of Liquid Crystalline Nanoparticles by Alkyl Ligands Variation.
    Grzelak J; Żuk M; Tupikowska M; Lewandowski W
    Nanomaterials (Basel); 2018 Mar; 8(3):. PubMed ID: 29518916
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Phase Behavior of Nanoparticle Superlattices in the Presence of a Solvent.
    Missoni LL; Tagliazucchi M
    ACS Nano; 2020 May; 14(5):5649-5658. PubMed ID: 32286787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Staged Surface Patterning and Self-Assembly of Nanoparticles Functionalized with End-Grafted Block Copolymer Ligands.
    Rossner C; Zhulina EB; Kumacheva E
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9269-9274. PubMed ID: 31050140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coalescence of Au Nanoparticles without Ligand Detachment.
    Guo P; Gao Y
    Phys Rev Lett; 2020 Feb; 124(6):066101. PubMed ID: 32109082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large-Area Monolayer Films of Hexagonal Close-Packed Au@Ag Nanoparticles as Substrates for SERS-Based Quantitative Determination.
    Xing L; Xiahou Y; Zhang X; Du W; Zhang P; Xia H
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13480-13489. PubMed ID: 35258923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals.
    Gu XW; Ye X; Koshy DM; Vachhani S; Hosemann P; Alivisatos AP
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):2836-2841. PubMed ID: 28242704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.