BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36866080)

  • 1. Mechanical energy fluctuation in lower limbs during walking in participants with and without total hip replacement.
    Anwar SFZ; Wang Y; Raza W; Arnold G; Wang W
    R Soc Open Sci; 2023 Mar; 10(3):230041. PubMed ID: 36866080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of mechanical energy in thigh, calf and foot during gait in children with cerebral palsy.
    Hua W; Nasir S; Arnold G; Wang W
    Med Eng Phys; 2022 Jul; 105():103817. PubMed ID: 35781382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.
    Queen RM; Sparling TL; Schmitt D
    Clin Orthop Relat Res; 2016 Sep; 474(9):2055-63. PubMed ID: 27287859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thigh and Shank, Kinetic and Potential Energies during Gait Swing Phase in Healthy Adults and Stroke Survivors.
    Litinas K; Roenigk KL; Daly JJ
    Brain Sci; 2022 Aug; 12(8):. PubMed ID: 36009089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant Galapagos tortoises walk without inverted pendulum mechanical-energy exchange.
    Zani PA; Gottschall JS; Kram R
    J Exp Biol; 2005 Apr; 208(Pt 8):1489-94. PubMed ID: 15802673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical energy in toddler gait. A trade-off between economy and stability?
    Hallemans A; Aerts P; Otten B; De Deyn PP; De Clercq D
    J Exp Biol; 2004 Jun; 207(Pt 14):2417-31. PubMed ID: 15184514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of pendulum mechanism and kinematic coordination from the first unsupported steps in toddlers.
    Ivanenko YP; Dominici N; Cappellini G; Dan B; Cheron G; Lacquaniti F
    J Exp Biol; 2004 Oct; 207(Pt 21):3797-810. PubMed ID: 15371487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inefficient use of inverted pendulum mechanism during quadrupedal walking in the Japanese macaque.
    Ogihara N; Makishima H; Hirasaki E; Nakatsukasa M
    Primates; 2012 Jan; 53(1):41-8. PubMed ID: 21874286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term hip loading in unilateral total hip replacement patients is no different between limbs or compared to healthy controls at similar walking speeds.
    O'Connor JD; Rutherford M; Bennett D; Hill JC; Beverland DE; Dunne NJ; Lennon AB
    J Biomech; 2018 Oct; 80():8-15. PubMed ID: 30227951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy flow analysis of amputee walking shows a proximally-directed transfer of energy in intact limbs, compared to a distally-directed transfer in prosthetic limbs at push-off.
    Weinert-Aplin RA; Howard D; Twiste M; Jarvis HL; Bennett AN; Baker RJ
    Med Eng Phys; 2017 Jan; 39():73-82. PubMed ID: 27836575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanics of quadrupedal walking: how do four-legged animals achieve inverted pendulum-like movements?
    Griffin TM; Main RP; Farley CT
    J Exp Biol; 2004 Sep; 207(Pt 20):3545-58. PubMed ID: 15339951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foot trajectory approximation using the pendulum model of walking.
    Fang J; Vuckovic A; Galen S; Conway BA; Hunt KJ
    Med Biol Eng Comput; 2014 Jan; 52(1):45-52. PubMed ID: 24057114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of prosthetic mass on swing phase work during above-knee amputee ambulation.
    Gitter A; Czerniecki J; Meinders M
    Am J Phys Med Rehabil; 1997; 76(2):114-21. PubMed ID: 9129517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematics of lower limbs during walking are emulated by springy walking model with a compliantly connected, off-centered curvy foot.
    Lim H; Park S
    J Biomech; 2018 Apr; 71():119-126. PubMed ID: 29456169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy cost of ambulation in trans-tibial amputees using a dynamic-response foot with hydraulic versus rigid 'ankle': insights from body centre of mass dynamics.
    Askew GN; McFarlane LA; Minetti AE; Buckley JG
    J Neuroeng Rehabil; 2019 Mar; 16(1):39. PubMed ID: 30871573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of different self-selected walking speeds in leveling of body center of mass, mechanical work and energy in healthy children.
    Carriquiry M; Silva-Pereyra V; Jerez-Mayorga D; Fábrica G
    Acta Bioeng Biomech; 2021; 23(3):125-131. PubMed ID: 34978307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical responses of Nordic walking in people with Parkinson's disease.
    Leal-Nascimento AH; da Silva ES; Zanardi APJ; Ivaniski-Mello A; Passos-Monteiro E; Martinez FG; Rodrigo de Carvalho A; Baptista RR; Peyré-Tartaruga LA
    Scand J Med Sci Sports; 2022 Feb; 32(2):290-297. PubMed ID: 34780079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical energy patterns in nordic walking: comparisons with conventional walking.
    Pellegrini B; Peyré-Tartaruga LA; Zoppirolli C; Bortolan L; Savoldelli A; Minetti AE; Schena F
    Gait Posture; 2017 Jan; 51():234-238. PubMed ID: 27825073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.