These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36866080)

  • 41. Reducing stiffness of shock-absorbing pylon amplifies prosthesis energy loss and redistributes joint mechanical work during walking.
    Maun JA; Gard SA; Major MJ; Takahashi KZ
    J Neuroeng Rehabil; 2021 Sep; 18(1):143. PubMed ID: 34548080
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Total hip arthroplasty using a cementless dual-mobility cup provides increased stability and favorable gait parameters at five years follow-up.
    Acker A; Fischer JF; Aminian K; Lécureux E; Jolles BM
    Orthop Traumatol Surg Res; 2017 Feb; 103(1):21-25. PubMed ID: 27890581
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Minimizing center of mass vertical movement increases metabolic cost in walking.
    Ortega JD; Farley CT
    J Appl Physiol (1985); 2005 Dec; 99(6):2099-107. PubMed ID: 16051716
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stride kinematics and knee joint kinetics of child amputee gait.
    Hoy MG; Whiting WC; Zernicke RF
    Arch Phys Med Rehabil; 1982 Feb; 63(2):74-82. PubMed ID: 7059274
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changes in plantar pressure, contact area and contact time symmetry during the gait 4 weeks before and 12 and 24 weeks after unilateral total hip arthroplasty.
    Gimunová M; Vodička T; Bozděch M; Vespalec T
    Clin Biomech (Bristol, Avon); 2021 Oct; 89():105473. PubMed ID: 34482069
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic cost, mechanical work, and efficiency during walking in young and older men.
    Mian OS; Thom JM; Ardigò LP; Narici MV; Minetti AE
    Acta Physiol (Oxf); 2006 Feb; 186(2):127-39. PubMed ID: 16497190
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pelvic obliquity as a compensatory mechanism leading to lower energy recovery: Characterization among the types of prostheses in subjects with transfemoral amputation.
    Castiglia SF; Ranavolo A; Varrecchia T; De Marchis C; Tatarelli A; Magnifica F; Fiori L; Conte C; Draicchio F; Conforto S; Serrao M
    Gait Posture; 2020 Jul; 80():280-284. PubMed ID: 32563728
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Passive double pendulum in the wake of a cylinder forced to rotate emulates a cyclic human walking gait.
    Carleton AG; Sup FC; Modarres-Sadeghi Y
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35576923
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of walking speed on gait kinematics and kinetics after endoprosthetic knee replacement following bone tumor resection.
    Okita Y; Tatematsu N; Nagai K; Nakayama T; Nakamata T; Okamoto T; Toguchida J; Ichihashi N; Matsuda S; Tsuboyama T
    Gait Posture; 2014 Sep; 40(4):622-7. PubMed ID: 25103777
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of a powered ankle-foot prosthetic system during walking.
    Ferris AE; Aldridge JM; Rábago CA; Wilken JM
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1911-8. PubMed ID: 22732369
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective.
    Kuo AD
    Hum Mov Sci; 2007 Aug; 26(4):617-56. PubMed ID: 17617481
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Does crutch length influence gait parameters after total hip replacement surgery?
    Freddolini M; Esposito F; Marcucci M; Corvi A; Braccio P; Latella L
    Gait Posture; 2018 Feb; 60():262-267. PubMed ID: 28711361
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rocker-profile design shoes improve pendular energy recovery in walking with no effects on total mechanical work.
    Ruggiero L; Carpi M; Minetti AE
    J Biomech; 2022 Nov; 144():111345. PubMed ID: 36283145
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gait-Assist Wearable Robot Using Interactive Rhythmic Stimulation to the Upper Limbs.
    Yap RMS; Ogawa KI; Hirobe Y; Nagashima T; Seki M; Nakayama M; Ichiryu K; Miyake Y
    Front Robot AI; 2019; 6():25. PubMed ID: 33501041
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of toe-out and toe-in gait with varying walking speeds on knee joint mechanics and lower limb energetics.
    Khan SS; Khan SJ; Usman J
    Gait Posture; 2017 Mar; 53():185-192. PubMed ID: 28189095
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical work performed by individual limbs of transfemoral amputees during step-to-step transitions: Effect of walking velocity.
    Bonnet X; Villa C; Fodé P; Lavaste F; Pillet H
    Proc Inst Mech Eng H; 2014 Jan; 228(1):60-6. PubMed ID: 24288379
    [TBL] [Abstract][Full Text] [Related]  

  • 57. No difference in gait kinematics or kinetics between limbs in bilateral total hip replacement patients at long-term follow-up.
    Gallagher NE; Bruce-Brand R; Bennett D; O'Brien S; Beverland DE
    Clin Biomech (Bristol, Avon); 2019 Jul; 67():166-170. PubMed ID: 31125910
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased power generation in impaired lower extremities correlated with changes in walking speeds in sub-acute stroke patients.
    Brincks J; Nielsen JF
    Clin Biomech (Bristol, Avon); 2012 Feb; 27(2):138-44. PubMed ID: 21899933
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamics of below-knee child amputee gait: SACH foot versus Flex foot.
    Schneider K; Hart T; Zernicke RF; Setoguchi Y; Oppenheim W
    J Biomech; 1993 Oct; 26(10):1191-204. PubMed ID: 8253824
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intralimb gait coordination of individuals with stroke using vector coding.
    Celestino ML; van Emmerik R; Barela JA; Gama GL; Barela AMF
    Hum Mov Sci; 2019 Dec; 68():102522. PubMed ID: 31707313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.