These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 36866503)
1. Improved estimation of the ratio of detection efficiencies of excited acceptors and donors for FRET measurements. Batta Á; Hajdu T; Nagy P Cytometry A; 2023 Jul; 103(7):563-574. PubMed ID: 36866503 [TBL] [Abstract][Full Text] [Related]
2. Proposal of a new method for measuring Förster Resonance Energy Transfer (FRET) rapidly, quantitatively and non-destructively. Helm PJ Int J Mol Sci; 2012 Sep; 13(10):12367-82. PubMed ID: 23202903 [TBL] [Abstract][Full Text] [Related]
3. Anomalous surplus energy transfer observed with multiple FRET acceptors. Koushik SV; Blank PS; Vogel SS PLoS One; 2009 Nov; 4(11):e8031. PubMed ID: 19946626 [TBL] [Abstract][Full Text] [Related]
4. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620 [TBL] [Abstract][Full Text] [Related]
5. Using structure-function constraints in FRET studies of large macromolecular complexes. Bujalowski WM; Jezewska MJ Methods Mol Biol; 2012; 875():135-64. PubMed ID: 22573439 [TBL] [Abstract][Full Text] [Related]
6. Estimating the distance separating fluorescent protein FRET pairs. Vogel SS; van der Meer BW; Blank PS Methods; 2014 Mar; 66(2):131-8. PubMed ID: 23811334 [TBL] [Abstract][Full Text] [Related]
7. Rise-time of FRET-acceptor fluorescence tracks protein folding. Lindhoud S; Westphal AH; van Mierlo CP; Visser AJ; Borst JW Int J Mol Sci; 2014 Dec; 15(12):23836-50. PubMed ID: 25535076 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence energy transfer-sensitized photobleaching of a fluorescent label as a tool to study donor-acceptor distance distributions and dynamics in protein assemblies: studies of a complex of biotinylated IgM with streptavidin and aggregates of concanavalin A. Mekler VM; Averbakh AZ; Sudarikov AB; Kharitonova OV J Photochem Photobiol B; 1997 Oct; 40(3):278-87. PubMed ID: 9372617 [TBL] [Abstract][Full Text] [Related]
9. The impact of heterogeneity and dark acceptor states on FRET: implications for using fluorescent protein donors and acceptors. Vogel SS; Nguyen TA; van der Meer BW; Blank PS PLoS One; 2012; 7(11):e49593. PubMed ID: 23152925 [TBL] [Abstract][Full Text] [Related]
10. Detection of FRET efficiency in imaging systems by photo-bleaching acceptors. Deng C; Li J; Ma W Talanta; 2010 Jul; 82(2):771-4. PubMed ID: 20602968 [TBL] [Abstract][Full Text] [Related]
11. satFRET: estimation of Förster resonance energy transfer by acceptor saturation. Beutler M; Makrogianneli K; Vermeij RJ; Keppler M; Ng T; Jovin TM; Heintzmann R Eur Biophys J; 2008 Nov; 38(1):69-82. PubMed ID: 18769914 [TBL] [Abstract][Full Text] [Related]
12. Confocal microscopic dual-laser dual-polarization FRET (2polFRET) at the acceptor side for correlating rotations at different distances on the cell surface. Bene L; Gralle M; Damjanovich L Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1050-1068. PubMed ID: 29292190 [TBL] [Abstract][Full Text] [Related]
13. Reliable measurement of the FRET sensitized-quenching transition factor for FRET quantification in living cells. Zhang J; Zhang L; Chai L; Yang F; Du M; Chen T Micron; 2016 Sep; 88():7-15. PubMed ID: 27239984 [TBL] [Abstract][Full Text] [Related]
14. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737 [TBL] [Abstract][Full Text] [Related]
15. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer. Qiu X; Xu J; Cardoso Dos Santos M; Hildebrandt N Acc Chem Res; 2022 Feb; 55(4):551-564. PubMed ID: 35084817 [TBL] [Abstract][Full Text] [Related]
16. Assessing Protein Interactions in Live-Cells with FRET-Sensitized Emission. Vámosi G; Miller S; Sinha M; Fernandez MK; Mocsár G; Renz M J Vis Exp; 2021 Apr; (170):. PubMed ID: 33970141 [TBL] [Abstract][Full Text] [Related]
17. Perrin and Förster unified: Dual-laser triple-polarization FRET (3polFRET) for interactions at the Förster-distance and beyond. Ungvári T; Gogolák P; Bagdány M; Damjanovich L; Bene L Biochim Biophys Acta; 2016 Apr; 1863(4):703-16. PubMed ID: 26854711 [TBL] [Abstract][Full Text] [Related]
18. Simplified Instrument Calibration for Wide-Field Fluorescence Resonance Energy Transfer (FRET) Measured by the Sensitized Emission Method. Menaesse A; Sumetsky D; Emanuely N; Stein JL; Gates EM; Hoffman BD; Boustany NN Cytometry A; 2021 Apr; 99(4):407-416. PubMed ID: 32700451 [TBL] [Abstract][Full Text] [Related]
19. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312 [TBL] [Abstract][Full Text] [Related]
20. Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells. Müller SM; Galliardt H; Schneider J; Barisas BG; Seidel T Front Plant Sci; 2013 Oct; 4():413. PubMed ID: 24194740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]