BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36866624)

  • 1. Potential of
    Gaiya DD; Muhammad A; Aimola IA; Udu SK; Balarabe SA; Auta R; Ekpa E; Sheyin A
    J Biomol Struct Dyn; 2023; 41(24):14832-14848. PubMed ID: 36866624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cofactor mobility determines reaction outcome in the IMPDH and GMPR (β-α)8 barrel enzymes.
    Patton GC; Stenmark P; Gollapalli DR; Sevastik R; Kursula P; Flodin S; Schuler H; Swales CT; Eklund H; Himo F; Nordlund P; Hedstrom L
    Nat Chem Biol; 2011 Oct; 7(12):950-8. PubMed ID: 22037469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dynamic determinants of reaction specificity in the IMPDH/GMPR family of (β/α)(8) barrel enzymes.
    Hedstrom L
    Crit Rev Biochem Mol Biol; 2012; 47(3):250-63. PubMed ID: 22332716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cystathionine-β-synthase domains on the guanosine 5''-monophosphate reductase and inosine 5'-monophosphate dehydrogenase enzymes from Leishmania regulate enzymatic activity in response to guanylate and adenylate nucleotide levels.
    Smith S; Boitz J; Chidambaram ES; Chatterjee A; Ait-Tihyaty M; Ullman B; Jardim A
    Mol Microbiol; 2016 Jun; 100(5):824-40. PubMed ID: 26853689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mycobacterial guaB1 gene encodes a guanosine 5'-monophosphate reductase with a cystathionine-β-synthase domain.
    Knejzlík Z; Doležal M; Herkommerová K; Clarova K; Klíma M; Dedola M; Zborníková E; Rejman D; Pichová I
    FEBS J; 2022 Sep; 289(18):5571-5598. PubMed ID: 35338694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunoinformatics prediction of overlapping CD8
    Fatoba AJ; Maharaj L; Adeleke VT; Okpeku M; Adeniyi AA; Adeleke MA
    Vaccine; 2021 Feb; 39(7):1111-1121. PubMed ID: 33478794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MERS virus spike protein HTL-epitopes selection and multi-epitope vaccine design using computational biology.
    Joshi A; Akhtar N; Sharma NR; Kaushik V; Borkotoky S
    J Biomol Struct Dyn; 2023; 41(22):12464-12479. PubMed ID: 36935104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches.
    Mahdevar E; Safavi A; Abiri A; Kefayat A; Hejazi SH; Miresmaeili SM; Iranpur Mobarakeh V
    J Biomol Struct Dyn; 2022 Sep; 40(14):6363-6380. PubMed ID: 33599191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrative immunoinformatics paradigm for predicting potential B-cell and T-cell epitopes as viable candidates for subunit vaccine design against COVID-19 virulence.
    Sarma VR; Olotu FA; Soliman MES
    Biomed J; 2021 Aug; 44(4):447-460. PubMed ID: 34489196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An immunoinformatics-derived DNA vaccine encoding human class II T cell epitopes of Ebola virus, Sudan virus, and Venezuelan equine encephalitis virus is immunogenic in HLA transgenic mice.
    Bounds CE; Terry FE; Moise L; Hannaman D; Martin WD; De Groot AS; Suschak JJ; Dupuy LC; Schmaljohn CS
    Hum Vaccin Immunother; 2017 Dec; 13(12):2824-2836. PubMed ID: 28575582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and characterization of a multi-epitope vaccine against Clostridium botulinum A3 Loch Maree intoxication in humans.
    Roja B; Chellapandi P
    Gene; 2024 Jan; 892():147865. PubMed ID: 37783297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overlapping CD8+ and CD4+ T-cell epitopes identification for the progression of epitope-based peptide vaccine from nucleocapsid and glycoprotein of emerging Rift Valley fever virus using immunoinformatics approach.
    Adhikari UK; Rahman MM
    Infect Genet Evol; 2017 Dec; 56():75-91. PubMed ID: 29107145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The
    López C; Yepes-Pérez Y; Díaz-Arévalo D; Patarroyo ME; Patarroyo MA
    Front Cell Infect Microbiol; 2018; 8():156. PubMed ID: 29868512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Silico Design of a New Epitope-Based Vaccine against Grass Group 1 Allergens.
    Moten D; Batsalova T; Apostolova D; Mladenova T; Dzhambazov B; Teneva I
    Adv Respir Med; 2023 Nov; 91(6):486-503. PubMed ID: 37987298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of multi-epitope based vaccine against
    Nayak SS; Sethi G; Ramadas K
    J Biomol Struct Dyn; 2023; 41(23):14116-14134. PubMed ID: 36775659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An immunoinformatics study on the spike protein of SARS-CoV-2 revealing potential epitopes as vaccine candidates.
    Ashik AI; Hasan M; Tasnim AT; Chowdhury MB; Hossain T; Ahmed S
    Heliyon; 2020 Sep; 6(9):e04865. PubMed ID: 32923731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reciprocal alterations of GMP reductase and IMP dehydrogenase activities during differentiation in HL-60 leukemia cells.
    Nakamura H; Natsumeda Y; Nagai M; Takahara J; Irino S; Weber G
    Leuk Res; 1992; 16(6-7):561-4. PubMed ID: 1353130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prioritization of potential vaccine candidates and designing a multiepitope-based subunit vaccine against multidrug-resistant Salmonella Typhi str. CT18: A subtractive proteomics and immunoinformatics approach.
    Chand Y; Singh S
    Microb Pathog; 2021 Oct; 159():105150. PubMed ID: 34425197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico rational design of a novel tetra-epitope tetanus vaccine with complete population coverage using developed immunoinformatics and surface epitope mapping approaches.
    Bazmara S; Shadmani M; Ghasemnejad A; Aghazadeh H; Pooshang Bagheri K
    Med Hypotheses; 2019 Sep; 130():109267. PubMed ID: 31383332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico prediction of CD8
    Kashif M; Waseem M; Subbarao N
    J Mol Graph Model; 2024 Jun; 129():108759. PubMed ID: 38492406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.